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ON SOME INTEGRAL INEQUALITIES
RELATED WITH THE MULTICOMMODITY INVENTORY MODEL

The aim of this paper is to establish a relation among sets of solu-
tions of some integral inequalities. The result allows us to reduce a mini-
mization problem for a multicommodity inventory model to a similar
Pproblem for a one-commodity model, which is solved by Arrow and Karlin
in [1] (see also Modigliani and Hohn [4], Blikle and Lo§ [2]).

1. Theorem on integral inequalities. Let T be a fixed positive real
number or co. All functions considered in this paper are defined on [0, T)
and take on real values. For the fixed function f let N (f) denote the set
of its discontinuity points.

Let K be the class of all functions satisfying the following conditions:

(K1) f is continuous on the left over (0, T) and continuous on the
right at 0. ‘

(K2) f has a finite limit on the right at each point.

(K3) N (f) is a nowhere-dense subset of [0, T').

Condition (K1) implies that the set N (f) is at most countable.

K is an algebra of functions with usual addition and multiplication.

By (K1) and (K2), a function from K is locally bounded, and so
locally integrable.

Let r, and 7, be fixed non-negative functions from K. We examine
Sets of functions u € K satisfying for all ¢ € [0, T') the following systems
(I) and (II) of the inequalities:

t i

(L.1) ful(s)ds > frl(s)ds,
¢ ‘

(I.2) fuz(s)ds > frz(s)ds,

(L.3) u,(t) = 0,

(L4) uy(t) =0,
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(I1.1) fu(s f(rl(s +7,(8))ds,

(IL.2) ) u(t) > 0.

THEOREM 1. (A) If u}, u; € K satisfy (I), then u* = w} + u, satisfies (II)
(and belongs to K).

(B) If u* € K satisfies (II), then there exist u;, u, € K satisfying (I)
and such that w* = uj +u,.

Proof. Result (A) is obvious. Result (B) is also obvious provided
that for all ¢ e [0, T)

(2) wh(t)—7:(t) >0,
or
(b) - u*(t)—ry(t) > 0,

since then it is sufficient to put u} = r,, u;
— 7y Uy =15 t0 (D).
Therefore, we consider the case where neither (a) nor (b) is satisfied.
Let u* € K satisfy (II) and write

8 = {tel0, T): w*(t) < ry()}.

= u*—r, to (a), and u] = u*—

Since (a) is assumed to be false, 8 is non-empty. Since #* —r, is con-
tinuous on the left, the set S can be written as

8 = L_I)A a;, b; ),
where A4(a;, b;) denotes the interval (open or one-sided closed) with
ends a; and b;, a, < b;, the set I is at most countable, and intervals
A(a;, b;) for i € I are disjoint. We assume that I is the set of positive
integers or a segment of this set. By (IL.1) it is clear that a; > 0 for all
t € I. Let us write, for ¢t € [0, T),

W) =r(t) and  u(t) = u*()—r(2).

It is obvious that «{?, «{” satisfy (I.1)-(1.2), but they do mnot satisfy
(I.4) for t € 8. The functions u;, u, satisfying (B) are obtained by improv-
ing u{”, 4" step by step on intervals A(a;, b,) for ¢ =1,2,... If the
set I is finite, the good functions u}, u; can be obtained after consideration
of all A(a;, b;) for ¢ € 1. For infinite I, it is necessary to take the limit of
the sequence of improved functions.

Consider the interval (a,, b,). Since
b
f (u*(8) —ry(8))ds < 0

a1
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and
f (w*(8) —7y(8)) ds >f 7,(s)ds >0,
0 (1]
there exists a point ¢, € (0, a,) such that
by
f (u*(8)—ry(s8))ds =0
‘
and
by
f (u*(8) =7y (s))ds < 0 for ¢; <t<<b,.
i

Put
1) = Iu*(t) for t € (¢;, b,],
ri(t) = u® () for te[0, T)\ (¢, b1,
W) lO for t e (¢y, by],
w* (@) —r () = u®() for te [0, T)\(e, b,].

We show that «{), u{" satisfy (I.1)-(I.3), but it is clear that wu’
satisfies (I.4) for ¢ ¢ (a;, b;), ¢ =2,3,... (thus %" is better than u{
in the sense that it satisfies (I.4) over a larger set than «{” does).

Verification of (I.1) and (I1.3) is straightforward.

" Consider inequality (I.2).
Ifi<e,, then (I.2) i8 obvious. If ¢, < t < b,, then

L
frz(s)ds fblrz f 8)—1, 3)
1 B
f u*(8) —ry(s))ds = [uf’(s)ds

Finally, if ¢ > b,, then

t 3 t
[ufd(s)ds = [ (w*(s)—ri(s))ds+ [ (u*(s)—r(s))ds
0 0 b1

t ¢
= f(u*(s)—rl(s))ds > frz(s)ds

Notice also that for t € (¢,, b,) Wwe have
b1 b
f (u*(s)—ri(s)ds = [ (u*(s)—ry(s))ds— [ (u*(s)—ry(s))ds
c [
b

= ——f (u*(s) —ry(s))ds > 0.
i
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Hence it follows at once that if
(a;, b;)N(cy, b,) #G@  for some 1€1,
then (a,, b;) = (¢4, b,). Let us suppose that we have constructed functions
u®, u e K satistying
(i) u* = uf?+u;
(i), u® satisties (I.1) and (1.3), and «{" satisties (I.2);
(iid),, u(zk)(t) =0 for te[0, T)\.L)k(a“ b;);
1>

(iv), if ul® (t,) > 0 for some , € (a;, b;), then w¥ (¢) > 0 for all t € (a;, b;).

Such functions have been constructed above for k¥ = 1. Suppose
that & > 1 and consider the interval (a,,,, b,,). If ¥’ is non-negative
over (@, byy), we put uf) = u® and ) = 4. Thus conditions
(1)g41-(iV)x,1 are obviously satisfied. If «{? is negative at a point from
(@115 byyy), then, by (iv),, it is negative over all (g, ,, b;,). Thus

bx41 bk +1
[ wsyds = [ (u*(s)—u(s))ds< o0.
%k+1 ar+1

On the other hand, in view of (I.2), we have

br+1 bx41
0<f ug")(s)ds=f (w* (s) —u{? (3)) ds
0 0

and, therefore, in a similar manner as for ¥ = 0 we assert that there exists
Ciy1 € (0, byy,) satisfying

b1
(1) [ (u*(s)—uf(s))ds = 0
Ck+1
and
brt1
f (u*(s) —u{(s))ds < 0 for cp ;< t<byy,.
t
Put

u* (t) forte (Cry1) bk+1]7

,u(lk+1)(t) = | .
uy(t)  for ¢t e [0, T)\(Cty1ybri1l,

for t € (Cy1y brsals '
uz(t) for te [0, TYN(Ck g1y Dgyal-
Clearly, u{*+V, u*+) belong to K, satisfy (i);,, and w*+) > 0.

We want to check (I.1) and (I.2).
If 0 <i?< ¢y, then (ii), implies (ii),,,, since

w0 (1) = WP () and  wftY = uP.

uf (1) =
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For ¢, <t< b, we have

i Ck+1 ¢
f u ) (s)ds = f ul®) (s)ds + f u*(s)ds
0 0 cIc+1

-

= [uf®(s)ds + f (w*(s) — u{M(s)) ds

0 k+1
¢ bg+1
= [uP(s)ds— [ (u*(s)—u{®(s))ds
0 4
t t

> fu‘l")(s)ds > frl(s)dg?

0

[

3 - Ck+1
fu(z""'"(s)ds = f (u* () — ui) (s)) ds
0

0

b +1 bk+1
= [ (w*(s)—uP(s))ds = [ uf(s)ds

br41

>f rz(s)ds>frz(s)ds.

0

If t>1b,,,, then

t Ck+1 br+1
fuﬁ"'“’(s)ds = f ul® (s)ds + f u*(s)ds+ fu(")(s)ds
0 0 k1 br+1
br+1
= f uP()as+ [ (u*(s)—uf(s))ds
ck+1

—fu(")(s)ds frl(s )ds,

t CL+1
fug"“)(s)ds = f (w* (s) —ulP (s)) ds + f(u (s) —uf(s))ds

br+1

(u* () — ul (s)) ds

°%n

¢

¢
= fu(z")(s)ds > frz(s)ds
0 0

Thus we have proved (ii),,.
Condition (iii),,, is satisfied, since u{*") = 0 over (a@x,;, bxi1)-
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For the proof of (iv),,, notice that there exists no ¢ > 0 such that

{2) uP () <0 for ¢y << Gy +8< by
since, otherwise,
bre+1 br+1 Ckt1te br+1
[ W) —uP)ds = [ uPs)yds = [ uP(s)ds+ [ uf(s)ds <0,
Ck+1 Ck+1 Ck+1 Ck+1t+e

which contradiets (1). ‘Thus, by (iv),, for every ¢ € I we have one of the
following cases:

(@) @; < b; <y

(B) Cyr < ;< b; < by,

() be1 < @< by

In cases («) and (y), (iv)x,, is true by (iv), (and by the equality uf*"
= u® over (a;, b;)). In case (B) we have u{¥*" = 0 over (a;, b;), and thus
(iv),,, is also true.

Hence we have proved that for every k € I it is possible to construct
functions u{?, u{" satistying (i),-(iv),. Since we showed that there exists
no ¢ > 0 satisfying (2), we conclude now that ¢, ¢ (¢;, b;) for ¢ < k. Thus,
for a fixed & € I, we have u{’)(t) = 0 for ¢ e (¢, by), ¢ = k. We also have
the inclusions

N(uf*t)) < N(ud) V{e; 113 Y{bit1}
and

N@u® c N@u*)UN(r,).
Let

Z=U(¢,b) and V =DN(u")UN(r,)UFr(Z).
iel
Since Z is open, Fr(Z) is nowhere dense (cf. [3], Chapter 1, § 8), and
80 is V. Put

for te Z\V,
w*(t)—r, () for t [0, T)\(ZUV).

(For t € V, u; will be defined later.)

The set [0, T)\V is open and dense in [0, T'). Therefore, it is the
countable sum of open intervals. Since u; is over each such interval equal
to w* —r; or to 0, it is continuous and has both one-sided limits at the
ends. We claim that w; has both one-sided limits at every point ¢, e V.
To prove this we need only to show that for any monotonic sequence
{t.} = [0, T)\V converging to ?, the sequence {u;(t,)} is convergent.
But the convergence of the last sequence is not sure only if {¢,} has two
infinite subsequences {t,} and {i,} satisfying

uy (1) =
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1° t, e Z\V,

2° ¢ e[0, T)\(ZUV),

3° u(t,) > 0 and limsupw; (t,) = limsupu; (t,),

4° Jty—t,_y] > lto—1,) > 1ty —1,] > Ito_‘t;z+1|.-

Condition 4° means that the sequences {t,} and {t,} interlace one
with another, and if we have sequences satisfying 1°-3°, then by induction

it is easy to construct from them subsequences satisfying 4°. By 4°, there
exists a sequence {i,} < I such that

[t — ] < lto—by, | < lto— 1.

Now we obtain

0 < liminfu; (t,) < limsupw; (¢,) = limsupw; (f,)
= lim(w* (t,) — 7, (%)) = lim(u® (b; ) — 7, (b, )) < 0.

Thus the sequence {u, (,)} is convergent to 0, and so we have proved
that at every point ¢, € V the function u, has both one-sided limits equal
to 0. Hence u, may be extended, in the unique manner, to the functions
continuous on the left defined over the whole interval [0, 7). This extended
function will also be denoted by u,. Since N (u;) = V, we have u; € K.
Putuf = u*—u;.

For the proof of assertion (B) wehave to check that u; and u; satisfy (I).

Since S < Z, we obtain u; >0 and w; > 0. If the set I is finite,
I=4{,2,...,k} then ] = u¥, w; =« and, by (ii), and (iii),, system
(I) is satisfied. If I is infinite, then for ¢ € [0, T)\V we have

up (1) = limu((¢) and wy(f) = limw;(2).
k k
Thus

¢ ¢ ¢
fu:‘(s)ds = flimuﬁ")(s)ds = limfuﬁ-")(s)ds
0 0 0

4 [
>1lim [ry(s)ds = [ri(s)ds fori=1,2,1€[0,T)
0 [

(the interchange of the limit and of the integral is possible, since 0 < |[u{ (s)|
< % (8)+7,(8) < const for s € [0,%]). The proof is complete.

2. Applications. We now apply Theorem 1 to a minimization problem
connected with a multicommodity inventory model.

Let ¢: [0, T)>R be a given non-negative, increasing and strictly
convex function. Next, let a,, ..., a, and b, ..., h, be positive, and y,, ...
.-+, ¥, Don-negative real numbers. Finally, let 7, ..., 7, be non-negative
functions belonging to €' = K.

8 — Zastosowania Matematyki 15.4
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Consider the following problem:
(P1) Minimize
T n n t

I[tyy .euyu,] = f{G(Z%“i(t))’{'Zhilﬁli‘i‘ f(u,-(s)——?,-(s))ds]}dt

1=
under the constraints

w,eK foriv=1,...,m,
t
Y+ f(u,-(s)—ﬁ-(s))ds} 0 forallte(0,7),t=1,...,m,
0
u; () =>0 for all te[0,T), e =1,...,n.

The function %, may be considered as the production ilftensity of
the ¢-th commodity for which the demand intensity is 7;, and the marginal
cost of holding a unit of the commodity for a unit of time is ;. Then
Ifu,,...,u,]is the global (production and, inventory) cost incurred during
the time period [0, 7') under the condition that the demand is met at
any time. Problem (P1) for n = 1 has been solved by Arrow and Karlin
in [1].

In this paper we show that, by Theorem 1, the problem for n» > 1
may be reduced to the case of n = 1 provided that

- h h
(3) L =...=2=h>0.
a, a,

Notice first that, without loss of generality of (P1), we may always

assume @, = ... = a, = 1. Then assumption (3) takes the form

(4) hy =..=h, =h.

Let
t

t; = sup{t € [O, T): f?i(s)d3< yt}

0
(here we assume that sup@ = 0) and
0 for ¢t € [0, t,],
r;(t) =
' {\7:(8) for te(i;, T).

It is easy to check that, since (4) holds, problem (P1) may be rewritten
as follows: '
(P2) Minimize

I[uy,y..pu,] = I[u] = f[c(u(t))—i—hf(u(s)—ﬁ‘r,—(s))ds]dt,
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where u = u,+ ... +wu,, under the constraints

;e K for¢i=1,...,n,

t t
fu,-(s)ds} fri(s)ds for all te[0,T), ¢ =1,...,n,
0

0
w;(t)>0 forallte[0,T),4=1,...,n.

Consider the following auxiliary problem:
(P3) Minimize I[«] under the constraints » ¢ K and
t

t
fu(s)ds> f(frl(s)—|— oo +7,(s))ds  for all te[0,T),

0

u(t)>0 for all te[0,T).

Let u* € K be the solution of (P3) (see [1]). Using Theorem 1 n—1
times we can present »* in the form

where u; e K for i =1,...,n, and
H t
fut(s)ds;fri(s)ds for all te[0,T), ¢t =1,...,n,
[1] 0

w;($)>=>0 for all te[0,T), i =1,...,m.

It is evident that the vector function [u], ..., w,] is the solution of
Problem (P2).
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RYSZARDA REMPALA (Warszawa)

0 PEWNYCH NIEROWNOSCIACH CALKOWYCH
ZWIAZANYCH Z WIELOTOWAROWYM MODELEM ZAPASOW

STRESZCZENIE

W pracy zbadano zaleinodci miedzy rozwigzaniami dwu ukladéw nieréwnosei
calkowych (twierdzenie 1). Nastepnie zaleznosci te zastosowano do rozwigzania prob-
lemu minimalizacji kosztéw produkeji i magazynowania w n-towarowym eciaglym
modelu zapaséw. Problem ten, w jednotowarowym przypadku, jest dokladnie opisany
i rozwigzany w [1].



