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SIZE-ROBUSTNESS OF TESTS
BASED ON ORDER STATISTICS AND SPACINGS
FOR THE EXPONENTIAL DISTRIBUTION

_ Abstract. The paper deals with the concept of robustness given by
Zielinski (see [7], [8]). Let a sample from the exponential distribution with an
u_nknown scale parameter 4> 0 be given. We consider the problem of
S1ze-robustness of tests based on nonnegative linear combinations of order
Statistics (Section 2) and normalized spacings (Section 3) of the hypothesis
H: < Ao against the alternative K: A > 1,. In Sections 1.1 and 1.2 we present
Some facts of stochastic and dispersive orderings which are used in the sequel.
Section 1.3 defines the violations of the exponential model.

L. Preliminaries. Denote by X,., and D,.,, for k = 1, ..., n, the k-th order
Statistic and k-th normalized spacing of a sample X,,..., X, from the
distribution function (d.f) F, respectively, i.e,

Dk:n = (n_k+ 1) (Xk:n_Xk"l:n)f Where k - 1, sy n, XO:H = 0.

Let F .and F, denote the d.£s of Y a,Xy., and Y a,D,.,, respectively. Let f,
1

1
(f;), if it exists, be the density function of F, (F,). Then we use the following
Dotation: F=1—F, and F~! for the inverse of F.
L1. Stochastic ordering.

_ DEeFNITION 1. We say that the d.f. F is stochastically less than the df. G,
Wntten F <, G, if and only if F(x) > G(x) for every x.

Lemma 1. If F <G, then F,<,G,, where a=(a,,...,a,)>0.
For the proof see [6].
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1.2. Dispersive ordering.

DEerFINITION 2. The d.f. F is said to be less dispersed than the d.f. G, written
F <4i5p G, if and only if

Flo)-F 'w<G 'v)—G '(w
whenever 0 <u<v<]1.

LEMMA 2. Let F and G be absolutely continuous with corresponding
densities f and g. Then F <4, G if and only if

gG ') <fF 1(v) for every O<p < 1.

The lemma follows directly from Definition 2 (see, e.g., [5]).

LEMMA 3. Let F and G be continuous, increasing and F(0) =0 = G(0).
Then F <4isp G implies

F,<.G, where a=(a,,....,a)>0.
The lemma follows directly from the proof of Oja [4].

1.3. A violation of the exponential distribution. Consider the statistical
model (R%, B%, {W,: 4> 0}"), where R, and B, are the positive half-line and
the family of Borel subsets of R., respectively, W, is the exponential
distribution with the d.f. 1 —exp(—x/4), x = 0, 4 > 0. Let us assume that the
violation of the model is invariable with respect to a change of the scale
parameter 4, i.e.,, a violation of the d.f. W into some d.f. F is equivalent to the
condition that W, is violated into F, for every A > 0, where F,(:) = F(:/).
Consequently, the violation of the statistical model is defined by the violation
of the probabilistic model (R%, B, {W}").

Let G be a specified d.f which satisfies the following conditions:

(i) G(0) =0,
(i) G has continuous density g,
(iii) r; is nondecreasing, not constant and
limrg(x) =1,
where rg is the failure rate function of G, i.e., rz = g/G. It is well known that
G = 1—exp(—Rg), where R; denotes the hazard function of G, ie.

Rg(x) = {rglw)du, x>0.
0

Moreover, let H be a specified d.f. which satisfies conditions (i), (ii), (iii) and 1s
increasing. '
We assume that the violations of W are defined by mappings n; and 7ig
from {W} into the family of all probability measures on (R, B,) as follows:
n6(W) = {F: W< F <4G},

fg(W) = {F: F is continuous, Sy = [0, o), W< gisp F <aisp H},
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Where
Sp = {x: F(x) is increasing}.

The violations generated by ordering relations in the set of d.f’s have been
Introdyced by Bartoszewicz [2].

Note that W, Geng(W) and W, He#y(W). This is a consequence of the
fact that W<,G if and only if

frewdu<x for every x>0
0

and, according to Lemma 2, W< 4sp H if and only if
hH '()<1—-v, O<v<l,
'€, if r,; < 1. Obviously, if G = H, then g(W) < ng(W).

2. Tests based on order statistics. Let X be a sample of size n from W,,
Whe_fe A >0 is an unknown parameter of the scale. Consider the problem of
teStlng the hypothesis H: A < A, against K: 1 > Ao, where A, is a fixed positive
ﬁ;ﬂnber, at a significance level a€(0, 1). Let us define the following class

tests: ’

Pl = {@,: sup Ey,0.(X) = a, Z“i >0,a>0},

A<io 1
Where

0a®) = I3 4, X1 > (@),
1

le, ©.(X) is the indicator function of the set

{i aiXi:n > ca(a)} .

gis ¢asy to see that the uniformly most powerful test ¢,, belongs to P; .
Oder the assumptions of Section 1.3 let us define

R,= sup (sup Ep, ¢, (X))~ inf (sup Ep, ¢.(X)),
Ferng(W) A€o Feng(W) A<io
Where 0 < ¢ < 1, ©.EP;.
If F runs through the set (W), then R, is the oscillation of the maximal
probability of the error of first kind and gives us a measure of robustness of the

test ®,€P; with respect to its size, under the violation ng(W). It can be easily
Shown that @, € P; implies

0uX) = IS 4 X > Jo[ W] (1 ~a)
1
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and, consequently,
sup Ey, 0,(0) = Pp(0, X > [W,]™*(1-).
Ao 1
From Lemma 1 it follows that ‘
(1) R, =1-a—G,[W, ] '(1-a).
Hence
R,= sup (sup E, ¢,(X)—a)

Ferng(W) A<ip

describes the maximal upper deviation of the real size of the test ¢, e P, from
its theoretical size. It should be mentioned that in fact P; consists of tests ¢,
for which

A=>a=1.
1
Really, the equality '
[W.1 ' (1—0) = A[Wad ™ (1—0)

implies @, = Qg4
We prove the following

THEOREM 1. For every test @,, where a # (0, 1,), there exists a,y, 0 < g
< 1, such that for every 0 < a < a, the following holds:
If (Pa, (P(o,]n)ep;-, then R(o,l") < Ra.

2.1. Technical results. First we present some auxiliary lemmas. Let
G satisfy conditions (i)(iii) of Section 1.3. For simplicity, the failure rate
function and the hazard function of G are denoted by r and R, respectively. We
introduce some notation which are used in the sequel.

Let @ > 0 be the vector of size n such that

Y.a;=1.
1
(2) Let us define
a=max(a;: 1 <j<n), p=card(: a;=aq)
and let dy, ..., d,e{a,, ..., a,}, 0 < q < [n/2] be all numbers such that
ki =card(j: a;=d)>2, where d,<...<d,.
Let d,, ..., @ be defined as follows:
{4y, ....48) ={a,, ..., a,}\{dy, ..., d }.

q
Y ki+k =n.

1

We have
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Q) Let me{l,..., n} be a number such that

a,>0, aui1=...=a =0.

n

Define

A, =) a, b =AfNn—k+1) fork=1,....,m

st

b=max(bh;: 1 <j<m), I=card(j: b;,=Db).
LEMMA 4. Under the notation of (3) we have

z Dy Dp-2 m—1

ga(z) m(n M)'j _‘- j (I:[ g(ui))g(Dm—l)

0 uy Um-—2

Where

k
D,=Dy(z,u,a)=(z—) a;u)/Ax+y for k=0,...,m—1,
1

Proof. The equality follows from the differentiation of

ZD1 Dm—1 m

Um-~1

Lemma 5. Let ¢ =(cy, ..., ;) satisfy the following conditions:
(1) ¢; = 0.

k—1

x exp(—(n—m)R(Dp - 1))dti,—y -..duy,

I § ([Tg@))exp(—(r—m)R(up))duy,....du
1

391

) e k—i))> Y ¢; for i=1,...,k—1. Let us define v=1—r, H, =1,

i

[ (ck—)— ¥ <)
He=- &1 -
xuj?cf }) knlr(u)exp(u (c/ck—1)+jv(s)ds)duk »
Where | > 2.

Then we have the following:
If there exists 1 <k such that ¢, >0, then

H,(¢e) > 1 = H, (0, c,).
Proof. Let u, =0. Using the transformations

k-1
(k —j)ck_ Z Com

z;= - L (w—u;—y) forj=1,... k-1

..du,,
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and assumptions (1), (2), we can express H,(c) in the form

© wk-1 L
Hyfo) = {...| T] r(Lyexp(~z;+ [v(s)ds)dz,_;...dz,,
0 o1 0
where
d CZ; )
Li=Lfz,c)=) e fori=1,...,k—1.

k—je— Y ¢
J
From the fact that
Cp. I
- 1 E_ -
(k—j)e,~ Z o 7

forj=1,...,k—1,

r and- v- are nondecreasing’ and nonnegative, respectively, it follows that

Li(z,0.c1) .

Ho)=(...| ]:[ r(Lz, 0, ck))e.x'p('-'—z",..+ g- v('s')ds)dzk_l ..dzy
] 0o 1 :
. e o k=1
=H0,cy=k-1(... [ []gw)dux_,...du, =1.
’ ] k-2 1

Let us assume that there exists | < k such that ¢, > 0. From the fact that r is
not constant and

c 1
k . >

T Tl
(k_l)ck— Z Cm
1

the proof is completed.
Under' the notation of (2) we have
LeMMA 6. If W, is the density of W,. then

~ ) n—=2p
lim wa(z)e)ip(z/_a) _ a ‘
I =Dt [] (a—a)
{a;#a}

Proof. Without loss of generality we assume that a;>0forj=1,...,n
Let

@) B, k) = %‘ffl‘;—f

Mg-, uk,‘—l

M, q—1
x fo.o f My exp(y; (d,/d 1))dug_ 4 ...duy,
0 0 v (k;—1)!
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where

i-1
M;=Mju,d)=(u—-73 du)d, forj=1,...,4,
T

k“(kl, vy k) and d =(d,, ..., d) are defined in (2). It is easy to see that
q
B, k) is the density of Y.d,V;, where V,, ..., V, mean the independent random

- 1
Variables and V. is distributed according to the gamma d.f, with the shape and
t € scale parameters which are equal to k, and 1, respectively. It is well known
l}at the normalized spacings from the sample from W are independent and

Stributed according to W. Consequently, for 4 = (d,, ..., @) defined in (2) we
ave

W.(2) = j Wi(z—u) B{u, k)du.
0

Like [3] has proved that

k ~
W;(z)=1-z(n )exp(—z/ai).

1 j#i(di'—dj)
We obtain
(9)
k d’l_c—Z
=——————exp(—z/d) for k=n,
T
W“(z) = k J*'&k—z z
Z——i——;—exp(—z/c’ii)j'exp(u/d,-)B(u, kdu for 1<k <n,
1 (ai"aj) o
J*i
(6) W.(z) = B(z, k) for k=0,

Where B s defined in (4).
We will distinguish two cases: a > d, and a =d,
If a>d, then p=1 and there exists joe{1, ..., k} such that a = dj,.

From (5) we' obtain

(% [ exp(w/d,) B, Kydu  if k

2 exp(u/d; ) Bu, u if k<n,
H @,—3d) o ’

lim W, (z)exp(z/a) = < T*Fo .

e e if k = n.
l—l (ajo_a.i)

i*Jo

5 -
Zastos, Mat. 20,3
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Using the transformations
Ji = di/(djo“di)s U= u/dfo’
= (Gj,—d)u/a;,, fori=1,...,q,

we have
@ q
J exp(w/a;) B, K)du = &i74/] 1@, —dyf

and the proof of this case is completed.
Let us consider the case a = d,. From (5) we obtain the equality

111‘1‘1 ﬁ"’a(z)e)ip(z/a)
Z—*aoC Zp !
asq'"kq"’l ~k 1 g—1
= =) Z T G—a) where S, = Y k.
(= 1)! T] (a—dp T¢ ),E[.( !
1
It 1s easy to notice that
i ari B 1 i a—d; _ a1
(a—a) (&i_ﬁ)— - . 4;—a; "
OO fle-g)T HEY (le-a)
1 1

Consequently, from the fact that

Yki+k=n, k,=p,
the proof for the case k > 1 is complete. If k = 0, then the proof follows
analogously from (6). Under the notation (3), from Lemma 6 and the obviou$
relation W, = W, we obtain the following

LEMMA 7. If w, is the density of W,, then

li Ma (z)exp(z/b) p
o 21 (-t [T b-by
{bj#b)

Under the notation of Lemma 4 and (3) we have
LEMMA 8. Let

y Dy-2k—1 a. ui
Cly,a)=J... | [H r(ui)exp(uib—‘—ui-irj v(s)ds)}
0 k 0

U -2 1

Dy~ 1 /b
xexp((n—k+1) | o(s)ds— | v(s)ds)duy_;...du,

0 0
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Jor k = 2,....,m and

y ny
Cy(y, a) = exp(n [ v(s)ds— | v(s)ds), where y=0, v=1—r.
0 0

Then_ Jor the vector a # 0, 1,) we have

lim Cm(ys a) > : (n;m)!ambm—ZI
F'Gyl_lexp(R(y/bm)—R(y/b)) nl(l—1)! H (b—b-).
(b, # b}

Proof. We show in detail the proof for the case | = 1. For the case [ > 1
he proof follows analogously. We have the following obvious relations:

(a) Dk—l(ys Ups oony Ug-2, Dk—Z(yi u, a): a)

=D, _,(y,u,a) fork=2,....m
k=2

(®) 2 w(@/b= 1)+ @ 1/by=1)Dy-3(y, 4, a

k-2

- Z uay/b, -y — 1)+ y/by—y/b-,
fol'k:z,”’m, 1

(©) o(y/b) < v(De-y (v, u, @) for k=1,...,m,
Which imply

; |
2y O 8> 42 exp(ROb) = RO ))Coes (3,0,

Consequently, under the notation (3), for k > ¢ = min(j: b; = b) we have

lim Ck(y3 a) ? 1 .m Ck 1(}’, a)
;:*;exp(R(y/bk)-—R(y/b,)) Ay—1(1/b,— l/bt)y—-ooexp(R(.V/bk )= R(}’/bt))

HenCe, by induction,

b= T1 b,
(7) lim m(y, a) > t+1 lim C(y a)
= XP(ROMB)—ROBY) ™ "
a6

Under the notation of Lemma 5 we obtain

bi"'Hyay, ..., a1, b)exp{(n—1) | v(s)ds)
0

lim C(y, a) = T =i

o [1(=b~Y a)

J



396 L. Marzec and P. Marzec

From (3) it follows that the vector (ay, ..., a,—;, b,) satisfies assumptions (1)
and (2) of Lemma 5. Consequently,
: bx—l
_liﬂct(y’ a)>:—1 ' -1

e [1(E=pb—% a)

1 i

and after simple calculations on the right-hand side of (7) the proof is complete.
Proof of Theorem 1. Let us put for the vector a # (0, 1)):

y=[W1(1-a), x() = [Wu,] *(1—a),
1e.,
®) 1—a = W, () = Woy(x()-
Write S(y) = Rg;,—R,. From (1) and (8) we obtain the equality

S() = G, (1) —G,y(x(¥))-

It is easy to notice that -

lim S(y) = 0.

y—o

If we are able to prove that there exists y, > 0 such that for every y > y, we
have '

d
250> 0

and, consequently, S(y) <0, then the proof will be completed. From the
obvious equality G, = G" it follows that

d
550 = & c0Nate0) x| ——L )
G Hx(»)g(x(») Zy-x »

Thus it remains to prove the inequality

lim 9.(0)

Im 7 > 1.
7TE G (x(y)g(x ))d—;x(y)

After the differentiation of (8) with respect to y we obtain

©) nW"-l(x(y))exp(—x@))%x(y) —
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Lemm, 7 and (9) imply

d
@ ‘ nWw"1 (x(y))(ax(J’))exP(}’/ b—x(y)) -2t
fim e KNI

{by # b}
Where p, by, ..., by, I are defined in (3). Under the notation of Lemma 8, from

Mma 4, (10) and property (iii) of Section 1.3 it follows that

..]E._n_ ga(y) d
’*"“nG"—‘(x(y))g(x(y))@x(y)

yib
nl(l—1!( [T ®—b))exp( | v(s)ds)C,.(y, a)

= lim {by#b} x(y)
== (n—m)!a,b™" 'y~ lexp(R(y/b,)—R(y/b))

From (8) and from the proof of Lemma 6 it can be easily obtained

i SPO/B=x0) b
= oo y! n(I—-1)! T] (b=b)
{by#b}
COflsequently,
/b
lim | v(s)ds >0
Y= x(y)

Hence Lemma 8 completes the proof.

N 3. Tests based on normalized spacings. For the statistical problem of
®Ction 2 we consider the following classes of tests:

F; = {@a: sup EW).qBa(X) = a’ Zal> O’ a 2 0}’ -
1

A€o

St = {W;: supEy Yi(X)=a,i=1,..., n},

A€o
Where

Pa(X) =1} a,D;,, > d,(a)) and ¥, = Poyy fori=1,... n
1

ObViously, S+ = P;. Moreover, if ¢ P}, then

q~’a' = (T)B/Zai'

It i easy to note that the uniformly most powerful test @, belongs to P, .
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Under the assumptions of Section 1.3 let us consider the size-robustness
function

o~

R,= sup (sup E;,¢,(X))— inf (sup Ep,@,(X),
Feftizz(W) A< ip Feftgg(W) A<2¢
where 0 <o < 1, c,BaeF: . After some calculations we see from Lemma 3 that
(11) -R,= sup (sup E;, ¢,(X)—0) = 1—a—H [W,] ' (1—q).
Feftpg(W) A<Ag
We have the following
THEOREM 2. Let 0 <a <1 and y,, ;€87 If i <j, then

R,y < Ry

Proof. Note that the normalized spacings from the sample from W have
the same distribution W. Thus the proof follows immediately from the fact that
under the assumptions of Section 1.3 we have (see [1])

Dn:n Sst' o <stpl:m
where D, is the i-th normalized spacing from H.

We prove the following

THEOREM 3. For every test $,, where a #(0,1,), there exists 0o
0 <ay <1, such that for every 0 < a < ay the following holds:
If ¢, Qo(oin)epa , then R(ol N < R

3.1. Technical results. Denote by G,., the d.f. of the k-th order statistic from
the sample of size n from G. We have

LEMMA 9. Let G satisfy assumptions (i)iii) of Section 1.3. Let r denote the
failure rate function of G, v =1—r and S(a,) =1,

w© o k-1 '
S(a)=(j)... ) (Hr(ui))

k-1 U k-2 u;

xexp(z (w/fa,— VDu;+(n—k+1) j v(s)ds + Z jv(s)ds)du,c 1 sl 5
where ke {2, ..., n},

a=(ay,...,a), a,>0anda >0,

=m—j+a;—(n—ja;+, forj=1,..., k—1.
Then

k-1
) fa<aforj=1,...,k—1and ¥ a; >0, then
. ion i

k=1

a
S(a) > k__.'l‘”b——S(O, ak),

H (a,—a)
1
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o]

. !
(i) (?_24-_1)'3(0 a) = £(exp(—u)/(?(u))de_l:,,(u) fork=2,....n

(iii) T (exp(—u)/G(w)dG,  ; .,(u) > Oj? (exp(—u)/G(w)dG, _..(u)
0 0

Jor k=2,....,n—1.
Proof. (i) If we put

=n—i+1)(a,—a)(u,—u;_)/a,

for i = 1,..., k—1, where u, =0, we get

k—1 fo's} w k—1
S(@) = —— 2 [ §(TT r)
[1@—i+1)@—a)® ©° !
k—1 k—21;

x exp(— Zz+(n k+1) j (s)ds + Z j'v(s)ds)dzk 1...dzy,

Where
;

_ _ 425
= D= Y T a—ay

From the assumption it follows that

l(a,2)>10,a,2) fori=1,....k=2, 20,
and

h-1(@a,z)>1_,0,a,2), z>0.

Cc’Ilse:quently, by the properties of G the proof of this case is completed.
(ii) It is easy to note that

® k—1

S(0, ak)=f _f exp(— 1) G" ¥ (uy - 1)H9(“)duk go.-duy.

0 U -2

Let us introduce the following notation:
k-1

P(u,-)=g(u,-)°f_ [ exp(—thy— )G n—) [] 90— ...du,

Uy -2 j+1
Where j = 2, ..., k—2. Hence, after changing the order of integration, we get

o0 w2

8(0, a) = j j P(u,)g(u)du,du, = j P(u,)G(u,)du, =

1
T k=2,

Iexp( te—1)g (- 1)G" F (- 1)G*~ (- 1) duy— ¢
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Thus

n! n!
o i W = =)

X

(exp(—uw)/Gw)g(w)G"™** ! (u)G* ™ *(u)du

O ey 8

o

= | (exp(—1)/G(1))dGy - 1.n(u).

(iii) By the assumptions the function exp(—u)/G(u) is nonincreasing. Thus
the result follows from the well-known property of stochastic ordering and the
fact that

%(}: (exp(— 1)/ G(W)dG, - 1.()— }: (exp(—)/G(W)dG, - ;.4(u)
= (n—1) :jj exp(—u)g(u)G"~ > W)((n—2)—nG(u))du
- Eexp(—u)G"-z(u)((n— 1)G(4)— G(w)du
>

exp(—u)G"~ *(u)((n—1)g(u)— G(w))du

=]

Let a and p be defined by (2) and z = min(j: a; = a). Denote by il, ..., I the
natural numbers such that 1 <i, <...<i;<n,q,>0for k=1,...,j and
a;=0for i#iy,...,i,. Let us introduce the notation

1
y—2 v
— ifl=i-1,...,i-1,
A= Ay, u, )= 4 B Dares S
o0 if 1#i,—1,...,i—1,
where v; = (n—i+1)a,—(n—i)a;+ 4,
© via
(12) V(y, a) = y*~ texp(y(1/a;,—1/a) + | v(s)ds),
0
Ao Ayy-2 ij—1
Vi(y,
08 = G e, +1)' (5; u,,.s_,(I;[ )
ii—1 u Ai; -1

xexp( Y. ((v/a,— D+ [ v(s)ds)+(n—i;+1) j v(s)ds)du
0 0

1
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Under the notation of Lemma 9 we have
LemMMa 10. If a # (0, 1,), then

(m—z+1)p—1)! [] (a—a)

—V(y, a) .
llm i s — _ {j>z,a;#a}
= Vi, @) a""#*172r8(a,, ..., a,)
nlp—1)! [] (a—a)
{aj#a}

< — :
a"" 2" g (exp(—u)/G(u)dG,- 1.a(1)

. The proof of the first inequality is similar to that of Lemma 8 and is
Omitted. The second inequality follows immediately from Lemma 9.

Proof of Theorem 3. We will use the notation introduced in this
Section. Let r =ry. Under the relation (11) for 0 <a <1, Ry, <R, is
®quivalent to the inequality

H[W] '(1-9< ﬁ(o,l,.)[W]_l(l —a).
Let x = [W]-'(1—a) and y = [W,]~*(1 —a). Then

(13) x = x(y) = —In(1 - W,(3)), %X(J’) = exp(x(¥)W,()-

0bviously, «—0+ if and only if y— co. Let the function b be defined as
follows:

b(y) = H(a,l..)(x(y)) - ﬁa()’)-

It is easy to obtain

s (x0) = 1—n(n—1) | H(x()+u)h(w) H**@W)d,
0

H,@) = n!f...jﬁh(qi)dun...dul,
Ca 1

Where
i—1
Y= 2 vty
1 s . .
C¢= Ca(y) “—"{(Ml, ...,u,,)20: Uy <ui<m if i= lyyoeus by

ul‘—l <ui if i-_)éil, ""ij}'
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The functions ﬁw_f“,(x(_r)) and H (y) are differentiable and their derivatives are
given by the following formulas:

(14) ';;ﬁw.l..)(x(y)) = (;%X(}’))n(n— 1) :f h(x(Y)+u)hw) H ™2 (w)du,
~ sl y— JZ Vith,
v g1 )

=(n—id,.+1)%15‘;j (n—i;+1)a,
X H h(ui)dun...du,-jﬂduij_l ...dul,

i#ij

C;a = Ca(y)= {(ula vy uij_l’ ui_,-+1, LR un) ? 0:‘

i-1
.V_ka“k
1 - . . .
Uy <uy < ————— if i=1i, ..., i
’ ' (m—i+1)a; v Th

ij—1

1

Uy <, if i # 0y, e, i, it ], — L <y
i i 1 s by I | ’(n—lj—l-l)a,-j

y— Z Uy,
fj'f‘l}’

If we denote by K the function

e o] u+ x(y) u
K(y) = frwexp(—2u+ [ wv(s)ds+ [v(s)ds)
0 0 0
x H" ™ 2(u)exp( —~yfa v(s)ds)du,
0
we get
d yia
(15) @H(o,un)(x()’)) < n(n—1)Ww,(»)K(yexp( | v(s)ds),
0
ha(y) = nlr(cy)exp(—y/a;)Vi(y, a),
where

¢ = 1/max ((n—i,+1)a,).

1sksj

This follows from (14), the monotonicity of r and from the fact that r < 1.
From (13) and Lemma 6 we obtain

lim exp(y/a—x(y)) > 1.

y— o
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Thus there exists Yo > 0 such that y/a > x(y) for every y > y,. For y > y, let us
define the functions K, and K, as follows:

yia—x(y) u
K.w= | r(wexp(—2u+[v(s)ds)H""*(u)du,
O 0
K,= | r(wexp(—2u+v(y/a)u+ fuv(s)ds)H" " *(u)du.
yia—x(y) 0
It is easy to note that
(16) K@) < K,()+K,()  for y> y,
and
1

lim (K, (y)+K,(y) =

y— o

From (15) we get

=T | (P WV AW)dH, -1 (w)

d W, (y)exp(y/a) K(y)V (y, a)
Eb(}’) S Ha(y)( (n_z)!yp—lr(cy) Vj(y, (l) _1)

MOreover, from (16), Lemmas ¢, 9 and 10 we obtain

— W, ())exp(y/a) K(3) V (v, a)
o D eV, a)

Thus there exists y, > 0 such that

Ed;b(y) <0 for every y > y,.

Finally, since lim b(y) = 0, there exists j, > 0 such that

¥y o

b(y) >0 for. every y > j,.
This completes the proof.
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