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1. Introduction. In this paper we present a numerical method of
calculating the approximate values of the function u(z,y) which over
the given rectangle

D:{fa<ae<b< o,c<y<d}
satisfies the differential equation

4 4 4 63

9
(1.1) al(w)a—;:—l-az(w) Sorags T B )a ~ 4+ a, ()

..I_ aau @_ a (m).az_u _|_a ( ﬁ
as(z) 0oy’ + a5 () Fye +a, P 8(®)

ox
and the following conditions:
1° over the straight lines ¥y = ¢ and y = d the boundary conditions

w
83+

+ay(@)u = f(z,y)

0%u ou .
(1-21) aqja—yz +a'27'a—y +a3ju(w70) =g;(®), Jj=1,2,
=C y=C
0%u ou .
(1-22) a’lja_yz' +a2ja—y +a'3ju("”7d) :‘Pj("”)’ ) =3,4,
y= y=

Where a;, = const;
2° over the straight lines # = @ and # = b the boundary conditions
(or initial conditions over one of these lines) of the form

Pu *u 0%u 0%u ow
(1'3) b1763+27602+3Jaz+b4762+b576

+bu =y;(y), J=12,3,4,

_|_

Where b;; are constants.
Obviously, we assume that the above-formulated problem has a uni-
que solution over the rectangle .D.
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The matrix transformation method described here makes it possible
to solve this problem. This method is a modification and, at the same
time, a generalization of the method given by Polozhii ([1]-[7]) and
called the method of summary representation.

Polozhil’s method reduces a given linear partial differential equa-
tion with constant cocfficients to » independent difference equations
whose solutions determine the approximate values of the function u(x, y)
in the knots of a rectangular net covering the rectangle D.

The matrix transformation method reduces the given boundary
or mixed problem to n independent linear ordinary differential equations
whose analytical or numerical solutions determine the approximate
values of the function u(z,y) over the straight lines ¥y =y, = ¢+ kh
[k =1,2,...,n;h = (d—c)/(n+1)].

Let us remark that the matrix transformation method can be applied
to problems in which both the form of equation (1.1) and the boundary
conditions (1.2,), (1.2,) and (1.3) may be more general.

2. Matrices of simple structure. In the matrix transformation method
important role is played by matrices similar to diagonal ones which are
called matrices of simple structure.

In the present paper we use the following matrix of simple structure

depending on two parameters, a and B, such that |[tga| = [s| <1 and
ltg Bl = [t| < 1: ~ B
s10 .. 0
1010 . 0
0601010 0
T=1|.........
0...01010
0. 0101
0. 01¢

It is easy to see that

s2—1 s10 .0
s 0010 .0
1 00010 ...0
0 100010...0
T2 OF = . .. i .
0. 010001 0
0. 01000 1
0 . 0100 ¢
0. 01t2—1

where E is the unit matrix.
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It is also easily seen that (see [1])

(2.1) T' = PA'P*, PP* =E, i=1,2,.

ooy

where A = [A;, A5, ..., 4,] is a diagonal matrix formed of the eigenva-
lues of matrix T, and P is a fundamental matrix whose rows are eigen-
vectors p; of the matrix T (P* denotes the transposed matrix). In order
to find eigenvalues of the matrix T of order » we have to solve the equa-
tion

(2.2) sin(n+1)Q + (s+t)sinn@Q 4+ stsin(n—1)Q = 0,

whose roots @; determine both eigenvalues and eigenvectors of the matrix 7.
Namely, we get formulae

},j = 2COSQ,-, p; = Oy'(plj’ ceey pm‘)y
where

pi; = cosasini@Q;—sinasin(i—1)@Q;,
n 1
¢ = Z(GOSasiniQ,-—sinasin(i—l)Qj)z] z,
i=1

The constants ¢; are so chosen that the vectors p; be normed.

Example 2.1. Let T, be the matrix obtained from 7 by substitu-
ting « = = 0. We have

010 . 0 1010 . 0
1010 . 0 00010 .0
01010 ...0 100010 .0
001010...0 0100010...0
T, = ....0..... , T—2E =| ............ .
0...0101 0 0 0...01 0001 1
0... 01010 0 01000 1
0.. 0101 0 0100 0
0.. 010 |0 010-1

For the matrix T, we easily get the eigenvalues and the eigenve-
ctors. Equation (2.2) assumes the form

sin(n+1)Q =0
Whence
jr

Q’=n+1’

j=1,2,...,m.
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Eigenvalues and eigenvectors of the matrix 7', are given by the
following formulae:
jr

(2.3) A; = 2cos w1’

ki

2 C e o o
(24) p;= ]/n—l—l (sinjy, sin2jy, ..., sinnjy), y = PR

The formulae
(2.5) T]_:P]AIPI’ .P%-:E-
are also true.

3. Reduction of a boundary or mixed problem to n independent ordi-
nary differential equations. Divide into n+1 strips the rectangle D by
the straight lines y =y, =¢+kh, k =1,2,...,n;h = (d—¢)/(n+1).

A
g}
d Y41
Yn
Yn
Y2
U
Cc yo
0 a b =

On each straight line y = y, we approximate equation (1.1) by the
difference-differential equation

(3.1)  auP 4 ayad?uy + aza?dtu,+ agu; + asadu, -+
+aguy + a;aduy+ agut+agu, =f,, k=1,2,...,n,
where
we(®) = u(®,ye), ful®) =f(®, %), a=1/h?

and by 62w, and é*w, we denote the second and the fourth central diffe-
rences, respectively.
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The system of equations (3.1) thus obtained may also be written as
(3.2)  Aup+ B(up_y+ U y1) + C(ug_g+ Up i) = frs k=1,2,...,m.

where A, B and C denote the following linear and homogeneous diffe-
rential operators:

Av = a, v 4 a, 0"+ (ag—2a,a) v'' + (@— 2a50) v’ + (a,— 2a, a4 6a,a2) v,
Bv = ayav'’ + asav’' 4 (a;a—4a3a%) v,
Cv = aza®v.

Let us now successively substitute in (3.2) the values ¥ =1, 2, ..., n.
The corresponding transformation of the two first and two last
equations gives the following system of equations:

Auy+ B(suy+ uy)+ C[(s2— 1) Uy sup+u3] = 7, = fi+ B(su;— %)+
+ Clsu,+ ($2—1)u,—w_,],
Aus~+ B(uy+us)+ C(su,+ u,) =7y = fo+ (Osu,—u,),
Aug+ B (uy+ uq)+ C(uy+ ug) =73 = f3,
(3‘3) Aun—2+B(un—3+un—l)+0(“n—4+un) = Tp—2 =fn—2’
Aun—l+B(un—2+un)+C(u‘n—3+tun) = r'n,—l =f'n—l+
+ B(tu,— %y 1),
Aty + Bty + )+ Clu, o+ tu, y+ (2—1)w,] =1, = f,+
+ Bty — Uy 1)+ C [Ty (12— 1) Uy — Uy 5]

Let us now introduce the following vectors:
u(@) = (uy(2), ua(@), ..., u, (@),
r(z) = (Tl(m)y 72(2)y oeuy Tn(w))

Using the matrix T we can give to system (3.3) the matrix form
(3.4) Au4 B(Tu)+C[(T*—2E)u] = r.

We shall show that the two first and the two last unknown com-
Ponents of the vector r can be determined by boundary conditions (1.2,)
and (1.2,), respectively.

We determine only the components r; and r, by conditions (1.2,),
Since the determination of the components r,_, and r, by conditions
(1.2,) is analogous.

Let us first remark that r, and r, depend on functions u,, u;, u,
and w%_,. Therefore, boundary conditions (1.2,) will be approximated
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by the difference expressions consisting only of those functions. Replacing
the derivative of first order by the expressions

Uy — Uy Uy— U_,y Uy— 4y + 3u,
B’ 2r 2h ’
and the derivative of second order by
Ug— 2%+ Uy Uy— 2ug+u_,
he h? ’

we can approximate each of the conditions (1.2,) by four different, line-
arly independent, expressions:
ay;

Qo
Sl]’ = ﬁ (ue— 2%, 4 uy) + ”’—fi (20— up) + ag;uy = @;(x),

Ay Ao
8, = 7:‘2] (g — 22Uy + 1) + "2%(’“1*“—1)'1‘“37'“0 = @;(®),

_ %y Aaj
N3 = = (Ug— 2u;+ up) + o (ug— 4u,+ 3uy) + ag;y = @;(2),

Gy Ao; .
Sy = — (uy—2up+u_,) T(ul—u0)+a3,-u0 =g;(@), J=1,2.

Take now two systems of numbers (x,, x,, ..., ), such that the
expression @, 8;;+ X285+ X383, + X4 Sa1 + 25812+ 6 S+ L7835+ 24 84y 18
identically equal to su,— %, for one system of numbers x; and to su,
+ (s2—1)u,—u_,; for the other one.

To get both systems of numbers z; we obtain two systems of linear
algebraic equations which after corresponding transformations assume

the form

2a,, (21 +25) + (204, + hag,) 23+ 20,5 (05 + x6) + (20,54 hay,) 2, = py,
(3.5) Aoy (Xy+ By — X3+ Ly) + A2 (B5+ Xg— X7+ Tg) = Doy
) Ay (T1+ T2+ T3+ 04) + Gg2 (T5+ To+ 27+ X5) = Ps,

hag, 0o — 201,24+ hago0s— 20,5 = Py,

where in place of (p,, p., 3, Ps) We substitute for the first system (0, ks,
s—1, 0), and for the other one (2h2s, h(s?+ 2s), 824 8—2, 2h2).
The Kronecker-Capelli theorem implies that system (3.5) has a solu-
tion if its matrix
20y, 20y, (2a1;+ hay,) 0 2a,5 2a,5 (2a15+ hay,) 0
Az Qg — Qg Qg1 Gz Aoy — Q22 Q32
a3, asn a3 Q31 A3y Qg Q32 as2
0 hay 0 —2a,, O ha,, 0 —2a,,

A =
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and the matrix obtained by adding to A a row of free terms are of the
same order. It follows from this that, when solwing system (3.5), in some
cases besides of determining the unknowns z; we have also to determine
the values of the parametr s. Moreover, let us remark that for the two
systems of equations the value of s must be the same, and the vector r
must depend on two boundary conditions. This implies further restric-
tions on the parameters, as is shown by the following examples.

Example 3.1. Let over the straight line y = ¢ be given the boundary
conditions

0%u
‘6;2' . = ¢,(x), u(xz, c) = @y(x).
We have:
a,;, =1, ay,, =0, asz =0, a12‘=0y ay, = 0, as, = 1.

Let us add to the matrix A the right-hand sides of two systems:
222 0000010 2h%s

4 _|000 00000 s |h(s2+29)
“l000 01111 |s—1 s*fsg—2
000 —2000010 2h?

It is easy to see that the systems (3.5) have infinitely many solu-
tions for s = 0 and are inconsistent for s = 0. The solutions are easy
to find. For example:

System I: 2, =2, =23 =2, =0, 25 = —1, £ =0, = x5 = 0.
System II: z, =2, =23 =0, 2, = —h?, 23 = —2, £, = ©, = x4 = 0.
Other possible solutions bring nothing new.
Expressions su,—u, and su,+ (s*—1)u,— u, contained in », and 7,
may be presented in the form

— Uy = — 81 = — (@),

—Uy—U_; = —h?28yy,—28,, = —hip,(r)—2¢,(x)
whence

r(®) = f1(®)— B, (v)— C[h?@(7) + 29, (2)],
ro(x) = fo(w)— Cpy(2).
Example 3.2 Let us now consider over the straight line y = ¢ the
boundary conditions of the form
ou

o = @1(2), u(xz, ¢) = @y(x).
Y ly=c



184 R. Zuber

In this case corresponding transformations give

00R00O0O0O0 0 |2Rh2s

10010000 |hs |h(s2+48—2)
A=]l00001111|s—1s24s—2
0R00000O0; O 2h?

whereas for two systems (3.5) we may assume the following solutions:

System 1: @z, =hs, 2, =23 =2, =0, 5 =8—1, g =2, =25 = 0.

System II: z, = h(s?+4s—2), z, = 2h, x; = 2hs, 2, = 0,

Ty = 8%7+8—2, ¥y =2, = wg = 0.
Hence we find
Suy— g = hspy(2)+ (s —1) @2 (),
Syt (82— L)u,—u_;, = h(s2+68)p,(x)+ (s2+ 8—2)p,(x).
which implies
ri(@) = f1(2)+ Blhspy () + (s — 1) @2 (@)]+ C[h (524 68) oy () +
+ (8?4 5—2) g, ()],
r2(®) = f2(@)+ C [hspy () 4 (s — 1) gy (2) .

It is easy to see that if we substitute s = 0, then neither r, nor r,,
and hence r, depend on the function ¢, (x). Similarly, for s = 1 the vector »
does not depend on ¢,(x). This implies that instead of s we can take any
number different from 0 and 1.

Let us now perform a matriz transformation of system (3.4), multi-
plying the left-hand side of this system by the matrix P. In view of (2.1)
we get

A (P*u)+ B(AP*u)+ C[(A2—2E)P*u] = P*r.
Writing v = P*u and s = P*r, we obtain for this system the form
Av+ B(Av)+4C[(A2—2E)v] = s
or the component form
(3.6) A’vk—‘(—lkB’vk—l—(li—2)C’vk =Sk, k _—-_1’2’...,”-
Taking into account the form of operators A, B and C and performing

corresponding transformations, we obtain n independent ordinary linear
differential equations

(3.6)  ay(@) ol (@) + an (@) v, (@) + a5 (%) 0 (@) + 2 (@) 0 (%) +
+ag ()0 (@) = 8 (@), k=1,2,...,n.

where a,; () and s,(x) are known functions.
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From these equations we can uniquely determine the functions
v,(x) using the boundary (or initial) conditions (1.3).

Proceeding analogously to the case of equation (1.1), by reducing to n
independent differential equations, we can for fixed ¥y = y, approximate
each of the conditions (1.3) by the expressions

(3.7) Duy,(2)+ G {1 (2) + g 11 (2)] = wy,

k=1,2,...,n; §=1,2,3,4.
where
Dv = b1] U"’+b3j v"+(b57—2b27-a) v'+(b6]-—2b47-a)v,

Gv = byjav' + byav,

whereas z is to be replaced by a or b, according to conditions (1.3). Sub-
stituting in (3.7) successively k¥ = 1,2, ..., n and transforming the first
and the last equations, we obtain

Duy+ G (su;+us) =y = p;+ G (suy— %),
Duy+ G (uy+us) =y = yjq,

(3.8) e e e e e e e e e et e e e e e e e e e e e e
Dun—1+G(un—2+un) = ly’,n—l = Yin-19
Du,+ G (u,,_,+1tu,) = Z’jn = an‘f'G(tun— Up 1)y

where ;. = v;(¥s)-

The first and the last unknown components of vectors I, = I, L5, ...,
l,,) may be determined from boundary conditions (1.2,) and (1.2,)
analogously to the case of independent components of the vector r(xz),
and then we substitute z = z.

The system (3.8) may be written in the matrix form:

Du(z)+G[Tu(z)] =1, j=1,2,3,4.

Let us now perform the left-hand multiplication of these equations
by the matrix P*. We have

D[P*u(2)]+G[AP*u(z)] =P*;,, j=1,2,3,4.

Taking into account the form of operators D and G and writing
m; = P*¥,, we get

(3.9) BV (z)+ﬂ2y‘k'vllc’(z)+ﬂ3jk'vllc(z)+ﬁ47'kvk (2) = myy,
k=1,2,...,n; 3j=1,2,3,4;

Where 8., are known constants.



186 R. Zuber

In this way the boundary or mixed problem, formulated in the intro-
duction, is reduced to n independent ordinary linear differential equations
(3.6) whose each solution v,(xr) would satisfy four boundary or initial
conditions (3.9). Solving In an exact or approximate manner problem
(3.6), (3.9), we find functions v,(x), v,(x), ..., v,(x), i. e. the vector v(x)

v(zr) = P*u(x).

The left-hand multiplication of this equality by the matrix P, in
view of (2.1), implies
(3.10) u(r) = Pv(x).

The components of the vector wu(r) determine the approximate
solution of the problem, formulated in the introduction, over the straight
lines y =y, (k =1,2,...,n).

4. An example of the boundary problem. Find the function u(x, y)

which on the square D:{0 <x<1,0<y<1} satisfies the Dirichlet

equation (see [7]),

i1 62u+2 6u+62u_4
(4.1) dz®  x 0x = Oy: y

and the boundary conditions

(4.2) u(z,0) =0, wu(zr,l)=2*-1,
(4.3) u(0,y) # o0, u(l,y) =0.

According to our method, equation (4.1) is replaced by the system
of equations

r’ 2 !
(4.4) Uy +;uk_2auk+ a(Up_y+ Upi1) = 4Yy,

1
'n+1’

k=1,2,...,n, where vy, =Fkh, h= a = 1/h.

Boundary conditions (4.2) and (4.3) are approximated by
(4.5) Uy =0, Uy, =27—1,
(4.6) u,(0) # o0, w(l) =0, k=1,2,...,n.

Introduce the operator

2
Av = v+ — v —2av.
x

For system (4.4) we then have
Awptaluy_y+upeyy) =4y, k=1,2,...,n,
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or, in view of (4.5), the developed form

Au;+ auy, = 4k = ry,
Aus+a(uy+us) = 4-2k = ry,
(4.7) e e e e e e
Aun—l+ a(un—2+un) = 4(’)’&—1)76 = rn-l’
Auw,+au, , = dnk =r,.

Now, applying the matrix 7', defined in example 2.1, for system
(4.7) we obtain the matrix form:

Au+aT,u =7r.

Performing a matrix transformation of this equation, substituting
P,u = v and taking into account formulae (2.3) and (2.4), we obtain u
independent differential equations

’ 2 ’ 2 kTC
(4.8) v’“—}——w—v"—ﬁ 1—2cosn 1 v, =8, k=1,2,...,n,

where

1k +(m2' 1)sin nkrw
n+1 n+4+1"

n
J. .
8, = 4h2 ¢sin
i=1

Each of the equations (4.8) can be exactly solved and for every
function v,(xz) we have the general solution

shr,.x chr,x sinny,  4sinny
O (1) =4, mk + B, p +? 2 + ) : —
k k

n
4 D'isiniy,+ sinny,
i=1

(2

where T3
2 v kr
Ty = ;sm;, Ve = w1’
Constants A, and B, are determined by boundary conditions (4.6).
These conditions determine the vectors u(0) and u(1). The left-hand
multiplication of those vectors by the matrix P, gives

v(0) = P,u(0) # oo, ©v(1) =P,u(l) =0.
The first of these conditions is satisfied for B, = 0. The second one
implies that
i (4h D) isinty, + sinny,) — sinny,
A4, = i=1

4 shr),
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Thus we have determined the vector v(x) = (fvl(w), Vo (T)y ouey vn(w)).

Finitely, we see that
u(r) = P,v(x).

9. Solution of 3-dimensional problems. Many physical and technical
questions may be reduced to 3-dimensional boundary problems. The
solution of problems by the method of olifference equations leads to
enormous systems of algebraic equations. It turns out that the matrix
transformation method may be easily applied to these problems.

Solving the 3-dimensional problem consists in a reduction of the
problem to m independent 2-dimensional boundary problems, each of
which can be solved by the matrix transformation method.

Let in the parallelepiped S:{a<az<b,e<y<d,e<z<f} the
function wu(x, y, 2) satisfy the differential equation

B a0 S e Y o) T ) oy
. ) ——— —_— xr) —- R

() 9 2\ oy* B 9 S 0wz oy

0tu 64u 0%u 03u
+as(x) —— EReEye + ag(w) 9y 922 +a7($)% + as() dwdy® +
0%u 0%u 0%u 0%u
+“9(w)m -’ram(w)w -l‘a«u(ﬂv)a_y2 + a2 (2) e +
ou
+ “13(*’1’)% +au(@)u = f(» ¥, ?)

and

1° over each of the planes z = ¢ and 2 = f two boundary conditions

0%u ou .

(5:2) aljaz— +a2j¥+a3ju = @; (z,9), J1=12,3,4;

2° over each of the planes ¥y = ¢ and y = d two boundary conditions

u 0%u 0%u
(5'3) b, +b2] 6 2 + 3j 0 g "I"b

17 ayazz -I—b”u = ‘lp’(m z

j=1,2,3,4;

4]6

3° over each of the planes # = a and x = b boundary conditions
(or initial conditions over one of them)

Pu 0%u 0%u 0%u ou
017' awazz +02j axz +037' ayz +04]' azz +051—(ﬁ'

+ Coju =X;‘(?/a 2), j=1,2,3,4,

where a;, b; and c; are constant, be given.

(5.4)

+
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Obviously, we assume that this problem has a unique solution in 8.

We shall show that the above-given problem may be reduced to m
independent 2-dimensional boundary problems.

Indeed, let us divide the parallelepiped S by the planes z = 2; = e+
+hi[t =1,2,...,m; h =(f—e)/(m+1)] into m sections. Write:
u(@, Y, 2;) = u;(x, y), [ (2, ¥, 2) = fi(@, y).

On each of the planes z = z; we can approximate equation (5.1) by
the difference-differential equation

0*u; 0*u; . 0*u; 0% u;
a1W‘|‘a2_§y4—+aaa26 ’“i"l‘%a 25y 2+ a5 ad? Y +
0%u, 0*u,; *u, ou 0%u, 02

+ agad?

0?/21 +a, aw; + ag awaylz + ayad? s + aqo + 1 +

ou; .
+ a,,00? u‘l‘als +a14u =filz,y), 1=1,2,...,m

The system of equations obtained may be written as
(5.5)  Auy(z,y)+Blu;_ (@, ¥)+ %1 (@, Y)+Cluy o (2, Y) + Uiy (2, ¥)] =
=fi(m7?/)7 ";=172a"'7m7

where A, B and C denote the following linear and homogeneous differen-
tial operators:

Ao — g 0*v ta o ta 0*v n ) ta 0%v +
O T e T e T M mayr TV o T M Gaoy

2p 020 0™

+ (@3— 2a50) — e +(“11—2asa)—a;2" + (@13—24a40) om +

+ (a4 — 2a,,0+ 6agat)v,

0%v 0%v dv
By = asa Fy —I—asgy—z— +a,a50—0— —l—(a12—4a3a2)v
Cv = aza?v
Substituting now in (5.5) successively ¢ =1,2,...,m and trans-

forming the two first and the two last equations, we have
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Au,+ B(su,+ uy)+ C[(s2— 1) uy+ su,+ ug] = r,
= f,+ B(su;— uy) + C[su,+ (22— 1L)u;—u_, ],
Auy+ B(u,+us)+ C(suy+ u,) =7y, = fo+ C(su;— ),
Aug+ B(uy+u,) -+ C(uy+ us) =13 =fs,
Aty o+ Bty g+ Uy 1)+ Oty 4+ %y) =7Tp_o = frn_2-y
Au, 1+ By ot Upy)+C0(Up_s+tu,) =1r,_1 =fn+
+ O (MU — U y1)
Ayt B (U 1+ )+ C ([ + 8+ (E— D) uy] =1 =
= fnt Bty —tp )+ O [ty -+ (2 — 1)Uy — Uy 2]

Let us introduce the vectors

(5.6)

u@,y) = (u(@,9), (@, 9), ...y Un(@,9)),
r(z,y) =(7'1(.'L',y), 7'2(m7?/)7---’7'm(w’?/))-
Using the matrix 7, we can write the system of equations (5.6) in
matrix form
(5.7) Au+ B(Tu)+C{(T*—2E)u] =r.

The two first and two last unknown components of vector » are de-
termined from boundary conditions (5.2) analogously to the above-
-described 2-dimensional case.

Now we perform the matriz transformation of equation (5.7). In
view of (2.1) we have

A (P*u)+4 B(AP*u)+ C[(A*—2E)P*u] = P*r,
or, substituting v(z, y) = P*u(x,y), s(z,y) = P*r(z,y),
(5.8) Av+ B(Av)+C[(A2—2E)v] = s.

Hence, writing (5.8) for the components of vector v(z, y) and taking
into account forms of the operators 4, B and C, we obtain m indepen-
dent 2-dimensional partial differential equations

(8.9) al-(w)—iq"—+a -(x)ﬂ +a .(w)i’)“—”—i + ag; ( )6—3'7‘5+
X LAY R
0*v, 0%v; 0%v, 0v;
+a5i(w)w + a; () ey +a7i($)‘5?}_2‘ + 05 (7) -~ + agi (@) v; = (%, 9),

where ay;(z) and s;(r,y) are known functions.
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Now we transform boundary conditions (5.3). For fixed 2z = z;,, we
approximate each of these conditions by the following expressions:

0%u; ou;
0—2/2— + bg;ad?u;+ b4"0—y + b5y u; = i (@),

b,;ad? O + by,
0y
i=1,2,...,m; j=1,2,3,4.
We write the systems obtained in the form
(5.10) Du;+G(u;_+uyy) =), +=1,2,...,m; j=1,2,3,4,
where D and G are the operators of the form

2

v v
Dv = sza—yz +(b4j_2b1ja)a—y + (bs;—2b3;a) v,

dv
Gv = by;a —ay + b3 av.

Substituting now in (5.10) successively ¢ =1,2,...,m, we get

Du,+ G (su,+u,) = ljl = '!’j1+G(8u1_u0)9
Duy~ G (uy 4 us) = l;‘z = Y2y

(5A1) b o
Dy 4G (U g+ %) =Ly 1 = Yim_1,
D+ G (g + ) = Ly = i+ G (B — Uy i)

j=1,238,4.

The first and the last unknown components of the vectors I, are
determined by boundary conditions (5.2). We then write systems (5.11)
in the matrix form

Du+G(Tu) =1, j=1,23,4.

whence, performing the matiix transformation and writing m; = P*l,,
we find for every function v;(z,y) two boundary conditions over each
of the straight lines ¥ = ¢ and y = d in the form

92,

(5.12) (31,--5?!—,

0v;
-|-.3sz + B30, = my(x),

i=1,2,...,m; j=1,23,4.
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Transforming analogously boundary (or initial) conditions (5.4),
we obtain for every function v;(z, y) four conditions over the straight
lines ¥ = @ and x = b, the boundary or the initial ones, of the form

_ 0%v; 0%v; 0v;
(5.13) Y1 Gt + }’2;7?/; -H’aj—; + 740 = 1Y),
t=1,2,....,m; j=1,23,4.

Equations (5.9) and boundary conditions (5.12) and (5.13) deter-
mine m independent 2-dimensional boundary problems each of which may
be solved by the method described in Section 3 of this paper.
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R. ZUBER (Wroclaw)
METODA TRANSFORMACJI MACIERZOWYCH PRZYBLIZONEGO
ROZWIAZYWANIA ROWNAN ROZNICZKOWYCH CZASTKOWYCH

STRESZCZENIE

Opisana w pracy metoda numeryczna jest modyfikacja i zarazem uogdlnieniem
metody opracowanej przez G. N. Polozija [3]. Umozliwia ona znajdowanie przybli-
zonych rozwigzan nastepujacego zadania :



Matrix transformation method 193

Niech funkcja u (z, y) spelnia 1° na prostokacie D: {a<2<b< o, c<y<d}
réwnanie rézniczkowe (1.1), 2° na prostych y = ¢ i ¥y = d warunki brzegowe (1.2,)
i(1.2,), 3° na prostych # = a i x = b warunki brzegowe (lub na jednej z nich warunki
poczatkowe) postaci (1.3). Zaklada sie, ze zagadnienia okreélone réwnaniem (1.1)
oraz warunkami (1.2,), (1.2,) i (1.3) ma jednoznaczne rozwiazanie na prostokacie D.

Metoda transformacji macierzowych sprowadza okreS§lone wyzej zagadnienie
brzegowe lub mieszane do n niezaleznych réwnan réziniczkowych zwyczajnych,
ktérych analityczne lub numeryczne rozwigzania okre§laja przyblizone wartosei
szukanej funkeji u(x, y) na prostych y =y =c¢ + kb (h = const, k = 1,2,..., n).

Metode transformacji macierzowych mozna zastosowaé réwniez do zagadnien
trojwymiarowych, jak to pokazano w precy.

P. 3VYBEP (Bponnas)

METOJ MATPUYHBIX TNMPEOBPA3OBAHUI NPUBJIWXEHHOI'O PEIIEHUS
JANPPEPEHLIVAJIBHBIX YPABHEHHUI B YACTHbBIX ITPOM3BOJHBIX

PE3IOME

ITpencraBnexHsblit B 3TO# cTaThe METOM ABJIsETCA MoAMdHKalUe 1 OOHOBPEMEHHO 0600Ie-
HMEM MeTola CYMMAapHLIX TNpeacTasiicHuil, pa3paboranHoro I'. H. Ilonoxum [3]. DTOoT MeTOxn
ZeflaeT BO3MOXHBIM pELIATh CIEAYIOLYIO 3aJadvy:

Mycte bynkums u(x, y) ynosnersopser 1° nuddepenunansHomy ypasuenuto (1.1) B mpsmo-
YronpHuKe D;{a <x<<bg oo, ey d}, 29 kpaesbiM ycnoBuaM (1.2;) u (1.2,) HA MpAMBIX
Y = cu y==d, 3° kpaessiM ycjioBHAM (1.3) Ha NPAMBIX X = a U X = b WM HaYaJbHLIM YCIOBHAM
Ha OHOM M3 3THi npsambIX. Ilpeanonaraercs, 4To chopMyIMpOBaHHas BbIlLE 3a0aYa HMEET e€OUH-
CTBEHHOE pelleHHe B NMpAMOYyronbHuke .

Merton MaTpHYHBIX IIpeoOpa30BaHHii MPUBOAMT KpaeByO MJIM CMELUAHHYIO 3afady K n Hela-
BUCHMBIM OOBIKHOBeHHbIM AubdepeHIHaIbHbIM YPaBHEHUSM, KOTODPBIX AHAJMTHYECKHE MJTH YH-
CNeHHBIE peIleHHs ONpPENeAOT NPUOJIHXKEHHbIE 3HAYEHHS MCKAaeMOM (YHKIHMH HA NPAMBIX y =
=y = c+kh(h = const, k = 1,2,...,n).

B crathe mokasaHO mpHMeHEHHE METOJA MATPUYHBLIX HPeoOpa3oBaHMil K TPEXMEPHBIM 3a-
Javam.



