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MAXIMIZATION OF A LINEAR FORM OVER A CONVEX HULL
OF VERTICES OF A CONVEX POLYHEDRAL SET

1. Introduction. We deal with a solution method for the problems

(11) max{f(x) = x| € X},

where X, is the convex hull of all vertices of the convex polyhedral set.

(1.2) X={weR”[Aw=b,a:>0},
ceR*, beR™ and A is an (m X n)-matrix.

We assume that the set X is nonempty and, consequently, prob-
lem (1.1) is consistent.
Clearly, if the function f(a) is bounded from above on the set X,

we obtain an optimal solution of problem (1.1) applying the simplex.
method to the following problem:

(1.3) max{f(x) | ¢ € X}.

However, if the function f(a) is unbounded from above on X, a solu-
tion method of problem (1.1) becomes complicated.

Theoretically, by the Weierstrass theorem, there exists an optimal
solution of problem (1.1) since the set X_ is cg)mpact and could be de-
scribed by a system of linear inequa,lities.p However, in practice, the con-
struction of such a system would require finding all vertices of the seb X,
which is very troublesome or even impossible; effective methods for:
finding all vertices of X are not known.

In this paper a solution method for problem (1.1) is presented for
the case where the function f(w) is unbounded from above on X. The:
method, which was inspired by the algorithms from [1] and [2], is some
adaptation of the algorithm described in [3] for ranking the vertices.
of the set X in the nonincreasing order of the values of the linear form
f(x), being bounded from above on X. It is based on introducing to
the constraints from (1.2) the additional constraint

(1.4) tTe< M,
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where t is some vector fixed according to (3.4), and M is a number so
great that each vertex of the set X satisfies condition (1.4) as a strict
inequality.

It should be stressed that the number M does not need to be spec-
ified and the set

X(M)={xeX|tTe< M, M > 0}

does not have to be bounded. But the function f(a) is bounded from
above on X (M).

In order to get an optimal solution of problem (1.1) we apply the
above-mentioned method [3] for ranking vertices of the set X{(M) till
we obtain the first vertex which does not satisfy condition (1.4) as an
equality. The latest vertex is an optimal solution of (1.1).

Continuing the above procedure we obtain the sequence X* of all
vertices of the set X according to nonincreasing values of f(x). This
enables us to propose a general method for ranking the vertices of X
even in the case where the function f(x) in unbounded from above on X.

Another method for generating the set X* under the assumption
that f(x) is bounded from above on X is presented in [4]. It consists
in a construction of special hyperplanes to cut off successively the ranked
vertices. Each hyperplane passes through vertices adjacent to the vertex
which is to be cut off and it is parallel to all infinite edges emanating
from that vertex. However, in order to apply the latter method to solving
problem (1.1), one has to specify the number M, which is trouble-
some.

The idea of the Murty method [3] is described in Section 2.

The procedure of the method for solving problem (1.1) in the case
where the function f(2) is unbounded from above on the set X is given
in Section 3.

The algorithm is illustrated by numerical examples in Section 4.

2. An idea of the Murty method. Let us suppose that there exists
an optimal solution of problem (1.3) (i.e., the function f(a) is bounded
from above on the set X defined by (1.2)) and rank 4 = m < 7.

Let a = {j;,Jay ---yJm} &nd & ={1,2,...,n}—a denote sets of in-
dices of basic and nonbasic variables, respectively, corresponding to the
basis 4, = [Ail’ Aj,,..., A; ] constructed from linearly independent
columns of the matrix 4, spanning R™. Similarly, ®, and &, denote sub-
vectors of the vector x consisting of coordinates with indices belonging
to the sets a and &, respectively, and A, denotes a submatrix of A formed
from the columns of A with indices belonging to the set &.

Denoting by x® € X the basic feasible solution relative to the basis
4A,, we can write the system of linear equations from (1.2) in the equi-
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Valent canonical form
(2.1) wa_l_EEmE — mg’
Where wg = A;lb and E’S == A;lAe.

Furthermore, we introduce the following mnotation for j e &:
47 — the relative optimality coefficient of the nonbasic wvariable
L€, d} = ¢,—cI E;, where E; is the j-th column of the matrix E,
fom (2.1));
x
Varighle

a
4]

& (i

— the adjacent basic feasible solution of x* with x; as a basic
(i-e~’ ol —a = {]}); ,

— the value of #; in x.

Thus, obviously,

f@”) = f(a®)+3d

Let F(x®) denote the set of all adjacent vertices of a® such that

for jeé.
T) < f(®°) for each x e F(x%. It can be defined as

X

(22 r aj . a
) Fa) = % |jet, d» <0},
p=1
Where a
x° !

= a, ay, ..., a, are sets of indices of basic variables such that
=" for pe {2,...,r}.

It should be noticed that # > 1 whenever x® is degenerate, and in
1€ Cage
18 of the

here x* is nondegenerate (i.e., »7 > 0 for all j € £) the set (2.2)
form
. F(a®) ={a |je& af <0},
0 i .
1t congigtg only of the adjacent basic feasible solutions of a°.
to ng fnoting by X* the sequence of all vertices of the set X according
heormnCI‘easing values of the function f(x), we can state the following
“M proved in [3]:
whig, HEOREM 1. If at, @2, ..., x""1 e X* are known, then the vertex x*,
ollows g—1, satisfies
(2.3) k—1 )
f(@*) = max {f(x) | & e |J F(a')—{a, ..., "},
Whey . i=1
° B(a') is defined by (2.2).

o 15 theorem enables us to gencrate successively the elements of
SCQuence x*,
3. .
DProblep, Solution method of problem (1.1). We consider the case of
Set XJ (1.1) where the function f(a) is unbounded from above on the
. Let
Ing ¢, t

*° € X be the basic feasible solution of problem (1.3) correspond-
€ canonical form (2.1).
%~ Zastos, pray. 18, 1
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THEOREM 2. If E, < [0] (i.e., all elements of the mairiz E, appearing
in (2.1) are nonpositive), then x* is an optimal solution of problem (1.1)-

Proof. Suppose E;< [0]. Since x,>0, x; >0, and x; >0, from
(2.1) we obtain x, = xi—FE.x;, >0 for each x;>0. Hence (x,,x;)
= (&3, 0) is the only vertex of the set X (defined by (1.2)), and it is also
an optimal solution of problem (1.1).

Now, let us define the following set:

& ={jet| B <0}

Applying the simplex method to problem (1.3) we can obtain its
equivalent form relative to (2.1), the optimality coefficients of which
satisfy
(3.1) {jeéld; >0 ={jeé|d; >0} #0.

It is known that the simplex method terminates whenever (1)

max d; > 0,

jegl
regardless of the existence of j € £— £° such that d;j > 0 (that means al-
ready the unboundedness of f(a) on X). However, in the latter situation
we can select
(3.2) d; = max d;

jeg—¢g0

and transform the problem (introducing @; to the basic variables) till
we get the case (3.1).

The above-described modification of the simplex method transform-
ing problem (1.3) to the case (3.1) is the first stage of the solution method
for problem (1.1).

The second stage of the method consists in the construction of the
set X (M) according to (1.4).

Suppose then that x® is the current basic feasible solution of prob-
lem (1.3) relative to (2.1) and that condition (3.1) is fulfilled (2) while
(3.3) d; = maxd;.

je&?

In order to determine the vector { appcaring in (1.4), we postulate

the following:

1° In the next iteration of the simplex method an c¢ptimal solution
of the problem
(i) max{(d) | x,+E 2, = xj, tTw+mn+1 =M, x>0,
Tpyr =0, M > 0}
() Obviously, it terminates also in the case where {je £|dj> 0} = 0, bub
this situation cannot occur for f(x) unbounded from above on X.

(3) It is obvious that the situation described in Theorem 2 does not occur (i.e-
the matrix E; has some positive elements).
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should be obtained by introducing =, as a basic variable (see (3.3)) in-

stead of «,,,.

2° We wish to avoid generating any vertices on infinite edges ema-
nating from #° for which the function f(ax) does not increase (e.g., the
hyperplane #T2 = M may be parallel to such edges).

Notice that at the next iteration of (i) we have
(i) & = a— -%c—d,‘; for j e EU{n+1}
and, in particular, d* = 0 whenever &, =0.

In order to realize 1° it is required that
(i) &' <0 for je[E—{kU{n+1}.

9bviously, d,‘;k =0 for any t, € R—{0}, but since d;’_‘,_l = —dg[t,
by (ii) and (3.3) we get

(3.4)

a5t A
t, >0 and t > :z“k for j e &£—{k}.
e
Since d; < dg for all j € £—{k} (see (3.3)), condition (iii) is fulfilled
When % =1 for all j € &. However, if d; < 0 for some j € §—{k}, we may

Set (%) % = 0 satisfying 2°. Thus we have
(3.5) . 0 for all j eau{jeé|d; <0},
77 l1 for all je{jeé|ai>0}(%.

t Let ug put &% = {j € £° | &7 > 0}. Now, according to (3.5), we consider
he following problem:
(3.6)

Inax{(dg)'rw§+f(mu) | &, + B, @, = x?, Z‘ =M, x>0, M >o},

jeﬁ?’_u{n+1

obt _THEOREM 3. An optimal solution of problem (3.6) ewists and can be
Wned in one iteration of the simplex method as follows:

ok k k ok _
ma = wz—‘MEk’ :Z};: . M’ wg_{k} = 0’ xn+1 = 0.

‘Proof. Notice that the above-defined point is obtained by intro-
Ucing (according to (3.3)) @, to the basic variables of problem (3.6)

\

th ) 1t d? < 0 for some j € £ —{k}, then f(x)< f(x*) for each x belonging to
© set {x =x24 1F By = —Fj, T =1, Tg_jy =0, 4> 0}

(*) According to (3.1), dj> 0 for je & only.
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instead of =,,,. Its optimality coefficients are

0 for j € aU{k},

i 3 for jet—&,,
! d;—dg for je &,

—dy for j =n+1.

Taking into account (3.1) and (3. 3) we can easily prove that dj <0
for all j € [§—{k}]U{n+1}. Hence a* is an optimal solution of prob-
lem (3.6).

Denote by X (M) the set of feasible solutions of problem (3.6) and
let X*(M) be the sequence of all vertices of X{M) ranked by the Murty
method (see [3] or Section 2) according to nonincreasing values of the
function f(a), i.e.,

(@)} < (dg)T®] for a, @' e X*(M) and i > j

(the same holds for the corresponding vertices of X*(MM)).
THEOREM 4. If the sequence x!, x?, ..., x* € X*(M) satisfies

(3.7) dai=M fori=1,2..,s-1
jeEO
and
(3.8) Dlws< M,
jeé(_)*_

then (a8, x2)T is an optimal solution of problem (1.1).

Proof. Clearly, X, « X(M) < X. Besides, from the definition of
the number M it follows that (a,, «;)T is a vertex of the set X (i.e.,
(z,, x;)T e X* = X)) if and only if the corresponding basic solution
(®,, @y 0,,,)T € X* (M) satisfies (3.8). Hence, by (3.7), (3.8), and the
definition of X*(M), the point (x2, )T is an optimal solution of prob-
lem (1.1).

Theorem 4 indicates that in order to solve problem (1.1) we have
to rank vertices of the set X (M) till the first vertex satisfying (3.8) (or,
equivalently, the inequality «,,, > 0) is obtained.

Applying the Murty method to problem (3.6) with the unspecified
number M we have to compare the expressions of the form Ma-+b. In
order to do this we assume that Ma,+b, = Ma,+ b, if and only if a, = a,
and b, = b, while Ma,+b, < Ma,+b, if and only if the pair (a,, b,) i8
lexicographically less than (a,, b,) (i.e., a; < a;, or a, = a, and b, < b,)-
Therefore, two right hand-side vectors should be computed.

The results given above enable us to propose the following
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ALGORITHM. Step 1. Solve problem (1.3). If an optimal solution
of the problem exists, it is an optimal solution of problem (1.1).

Step 2. Check whether FE, < [0] in the latest canonical form (2.1)

of problem (1.3) obtained in Step 1. If so, then &® is an optimal solution
of problem (1.1).

Step 3. Check whether condition (3.1) is fulfilled. If so, go to Step 4.
Otherwise, applying the modification of the simplex method according
to (3.2) transform the problem to the case (3.1) and go to Step 4.

Step 4. Find an optimal solution of problem (3.6).

Step 5. Apply the Murty method [3] to generate the sequence X* (M)
and verify conditions (3.7) and (3.8). The first vertex in X*(M) satisfying
(3.8) gives an optimal solution of problem (1.1).

Notice that the continuation of Step 5 with deleting all vertices
Sa'tiSfying’ (3.7) allows us to obtain the sequence X* of all vertices of the
Set X defined by (1.2) according to nonincreasing values of the linear
form of f (@), being unbounded from above on X.

4. Numerical examples. We consider the following two examples to
Ulustrate the algorithm.

Example 1. Solve the problem
max {3v, + 22, | (x,, ¥,) € V,},
Where V_ is the convex hull of all vertices of the set
V= {@, )] —20,+5,<2, ,—25,< 1, #, >0, z,>0}.
The problem can be solved graphically (see Fig. 1).

ﬁ\
Xq

(0,2)
\
P\

—_—
LIl

| 10) %1

Fig. 1

The set V, is the triangle with the vertices v* = (0, 0), v* = (1, 0),
and v3 = (0, 2). Since the function f(»,, #,) = 32,+ 2w, attains its maxi-
Mum on that triangle at the point 3 = (0, 2), it is an optimal solution
of the problem.
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Now, we solve the problem applying the algorithm described in
Section 3.

First we consider the following standard form corresponding to (1.3):
Maximize f(x) = 32,22, subject to
=28y + Bty =2, B —20,+3, =1,
where 2, > 0,2, > 0,2, > 0, 2, > 0.
Thus we have

-2 110 T2 _ .
A_[1_201], b—[l], ¢c=1[3200].

Step 1. The simplex method applied to the above problem terminates
generating the basic feasible solution

x®=[10 4 0]

(yielding the vertex »® = (1, 0)) corresponding to the following canonical
form (see (2.1)):

82, — 32,1+ 3—>max
subject to (5)

—32,+ 23+ 22, = 4, x,—22,}+a,=1.
Then a = {1,383}, & ={2,4}, & = {2}, and f(x°) =3. Since dz

= max{8, —3} = 8 > 0 and 2 € &% the function f(x) is unbounded from
above on the set X.

Step 2. Notice that & 5= £° so E;<[0].
Step 3. Condition (3.1) is fulfilled since {j e §|dj > 0} = &°.

Step 4. According to (3.5) we set € =[0 1 0 0]T and solve the
following problem corresponding to (3.6):

82, — 33,4+ 3—>max
subject to

=30, + 23+ 22, =4, @,—20,4+2,=1, x,4+x5=M.
An optimal solution of the problem (see Theorem 3) is of the form
2 =[2M+1 M 3M+4 0 O
corresponding to the canonical form

—3w,—8ws+8M + 3->max
subject to
Ty+20,+ 305 =3M+4, x,+o,+205 =2M+1,
Tyt ws = M,

(4.1)

where f(w“z) = 8M+3.

(5) For convenience we omit the nonnegativity constraints in the rest of the paper
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Step 5. We apply the Murty method to problem (4.1), where a,
=1{1,2,3} and ¢, = {4,5}. Taking
' =[2M+1 M 3M+4 0 O0]F
(obtained in Step 4 as *°) as the first vertex of the sequence X*(M),

04 Gs
we find the set (according to (2.2)) F(x') = {& ', x '} (with z, and x;
as the basic variables, respectively). Since

vl =3IM+2, 1=DM, and 2d1=—IM—6>1d21 = —8M,

(14 p—
We infer, according to (2.3), that @ * follows &! in the sequence X*(M).
Henee we obtain

?=[}M-1 M 0 iM+2 o

Corresponding to the canonical form

3 7 1
§$3—§$5+§M—3-—>ma-x

Subject to

%m3+$4+gw5 =g_M+2, $1—%m3+%m5 - %M_l’ w2+$5 —_— M,

Where fl@®?) =IM—3, a, ={1,2,4}, and &, = {3, 5}.

Notice that the vertices @' and a2 are nondegenerate. Then (see
€orem 1) we have

C) Py — (a2, 22} = {7, 2%},

ie=]1

Comparing the values

5
f(m"l) = f(x')+»31dr = 8M+3—8M =3
and

S
fl@) =f(@)+rpde =M —3—1M+7 =4,
5 -
We choose @« 2 as following a? in the sequence X*(M). Thus we obtain

T =10 2 0 5 M —2]" corresponding to the canonical form

76, — 223+ 4—>max
Subject to

—3%, 4+ 20,4+, =5, 28, —@+@=M—2, 2z +x,+x,=2.
Since #3 = M —2 > 0, a3 satisfies condition (3.8). Hence 2} = 0 and

@) =2 are the coordinates of the optimal solution of the considered
Problem.
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Example 2. Solve the problem
max {2, + @, | (%, ¥2) € V,},

where V_ is the convex hull of all vertices of the set

»
V ={®, @) | —0,+2,<2, —20,+,<1, >0, ,>0}.

The vertices of the set V are v* = (0, 0), v = (0, 1), and »3 = (1, 3}

(see Fig. 2). Hence v® = (1, 3) is an optimal solution of the problem.

A
Xy

(,3)

(oh)] S

>
1

Fig. 2

The initial canonical standard form of the problem is (aceording
to (1.3)) the following:

2z, +x,—>max
subject to
-+ 3ty =2, —20,4@,4+w,=1.
Hence
|11 10 12 _ T
A—-[_z 1 0 1], b—[l], c=[2 1 0 0],

a=1{3,4}, &={1,2}, and £ ={1}.

Since max{d?, d2} = max{2,1} = df and 1 € £° (the first column of
the matrix E, is nonpositive), the function f(z) is unbounded from above
on X but condition (3.1) is not fulfilled (d; =1 > 0 and 2 € £— &°). Then
in Step 3 we have to use the modification of the simplex method intro-
ducing, according to (3.2), #, to the basic variables. Thus we obtain
successively

4, — 24 +1—->max
subject to
1+ T3 —2 =1, —2o+8+5 =1,

and then (introducing #, to the basic variables)

—4w;+ 32,1+ 5—>max
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subject to
w1+w3—$4 =1, $2+2.’D3—.’I/‘4 =3.

Now, in Step 4 we introduce the additional constraint o, < M (since

t=100 0 0 1]% by (3.5)) and solve, according to (3.6), the following
problem:

—4234 32, +5—->max
(4.2) subjeet to
Oyt vs—2, =1, @+20,—2, =3, ®,+w;=DM.
The optimal solution of problem (4.2), which follows
! =[M+1 M+3 0 M 0],

is the firgt vertex of the sequence X*(M); the solution corresponds to-
the canonica) (equivalent to (4.2)) form

—4x,— 325+ 3M +5—>max
Subjeet to

Titogtms = M+1, @,+203+2; = M+3, z+a =M,
Where al

B o o3
_ ={1,2,4}, & ={3,5} and F(x') ={x ', «'}. We select x*
Which follows @t in the sequence X*(M). Thus we obtain
@ =[3M—} 0 3M+: M O
orresponding to the canomical form

25, — x5+ M —1->max
Subject o
Tr—3w+ oy =3IM—3, dwotaatiwg=3M+3, atas=M.

NOW, we have
2 . 05 as
U F(x')— {x, ®*} = {x La 1,
i=1

Where o, — {1, 3,4} and &, = {2, b}. Since the value of f(x) is greater
od o o .
for % than for a2, we take ®* = . Thus we obtain
=1 3 0 0 M|"

Which corresponds to the canonical form (4.2). Since a? = M >0, x*
Satisfies (3.8). Hence 4} = 1 and } = 3 are the coordinates of the optimal
Solution of the considered problem.

Finally, it should be noticed that in Example 1 the simplex method
terminates at the point v* = (1, 0) while the Murty method allows us
to state that the optimal solution of the problem is 3 = (0, 2).
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In Example 2 the simplex method terminates at »* = (0, 0) bub
.due to its modification we obtained »® = (1, 3) which turned out to be
also (after applying the Murty method) the optimal solution of the cor”
sidered problem.
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