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OPTIMUM CHOICE OF INITIAL APPROXIMATIONS
IN INTERPOLATION METHODS OF SOLVING EQUATIONS

0. The equation f(z) = 0 may be solved by interpolation methods
which are described in detail by Traub ([2], chapter 4). The investigation
of the convergence of the approximations obtained by these methods
leads to sequences of numbers satisfying certain recurrent inequalities.
Such sequences are considered in Section 1. The obtained results are
in Section 2 applied to the problem of optimum choice of initial approxi-
mations in interpolation methods. It appears that this problem is a gene-
ralization of the known problem of the polynomial #"+ a,2" '+ ... +a,,
having its minimal maximum absolute value in the interval (—1, 1).
That generalization is investigated in Section 3. For the most simple
interpolation methods the optimum initial approximations are found.

1. Boundedness and convergence of the sequences satisfying recurrent
inequalities. In this section we deal with the sequence {d;} of non-negative
numbers satisfying the inequalities

n
@) a<[]ai, (=n,0+1,..),
i=1

where y;, 73y ..., ¥, are fixed non-negative numbers and where y, # 0.
The polynomial

(2) I'(x) = a"— (8" 2" 4 ... +9,)
hag thus exactly one positive zero &£. Let
(3) I'(x) = (x— &) (bya™ '+ bya™ 24 ... +b,_,) (b, =1).

In the first part of this section we shall formulate the conditions
ensuring that the sequence {d;} is limited in such a way that

d; < max{dy, dy,...,d,_,} (t=mn,n+1,..).



202 8. Paszkowski

THEOREM 1. If the numbers d,, d,, ..., d,_, satisfy the inequality

n-1
(4) [] &<t
h=0

then the successive elements of {d,} satisfy similar inequalities

n—1
(5) [[dr<1 G=n,n+1,..).
h=0

Proof by induction. It is sufficient to show that from the assum-p
tions it follows that

n—1
(6) [] &ra<1.
k=0

From (4) and also from (1) for ¢ = n follows

)  [] @ =a,J] @ <([]aw) [T ae, - an ] avn.
h=0 h=1 j=1 h=1 h=1

From (3) and (2) it follows that
vh="E8p_,—b (h=1,2,...,n-1), y,=2£Eb,,.
Therefore inequality (7) may be written in the form

n—1 n—1 n : n—1 ¢
b 1/ bph—1 bp, — b,

[] @n< s [] aizs =(] [ ) = (] ] diaca)

h=0 h=1 h=1 h=0

Hence (6) follows from (4).

THEOREM 2. If & > 1, if the coefficients of the polynomial I'(z)[(z—&)
satisfy the inequality
(8) 1>2b0,2b,>...20b, >0,

and if inequality (4) is satisfied, then
(9) d; < max{dy, dy,...,d,_;} (t=mn,n+1,...).

Proof. First, we shall prove inequality (9) for ¢ = n. Since from (1)
it follows that

n
d, < [ &4,
j=1

it suffices to prove that

[] &1 < max{d,,d,, ..., d,_}.
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If the right-hand side expression is equal to d, (0 < k< n—1), this
inequality may be stated in the form
n
(10) gp-et [ @r,<1.
§=1,j#n-k
The sum of the exponents at the left-hand side equals y,+ y,+ ... +
+y,—1, i.e, in view of (2) and (3), equals

(11) —I'A) = (—1)(bo+ b1+ .- +byy).

Let us raise both sides of (4) to the power £—1. Since £—1> 0,
from (4) we have

(12) d.sf:‘l”" = d“-'—‘) -1 1,
Here also the sum of the exponents is equal to (11). In (12) occurs,
among others, the factor

(13) d;f—l)bn_k_l — d‘%l+)’2+..-+7n—1—(e—1)(bo+.-.+b”_k_2+bn_k+...+bn_1)
n
=api ] drehe,
j=1L7i#n—k

The exponents y;— (&—1) b;_, are non-negative. In fact, assumption
(8) gives
Vi— (6— l)b:i—l = gbj—l_ b;i_ (&— l)bj—l = b:i—l_ bj =0.

But we assume that d,>d,, d,,...,d,_,; therefore, if the factor
dyi~(-1%-1 gt the right-hand side of (13) is changed into dZi—f*~"%-1,
then the whole expression will not increase.

Substituting the changed expression in place of dff~»—k-1 into (12),
we obtain inequality (10), g.e.d.

The proof of inequality (9) for ¢ = n+1, 42, ... is the same as
the proof for ¢ = n because theorem 1 justifies the use of inequalities (5),
analogous to (4).

Example 1. If y, = y, = ... = 9,, > 1/n, then & > 1 and inequality
(8) is satisfied (see Traub [2], p. 50-51). Therefore, from (4) the assertion
(9) of theorem 2 follows. _

In the second part of this section we shall formulate the conditions
asserting the convergence of {d;} to 0.

THEOREM 3. The clements d; satisfy

n—1

(14) G<[[am @=0,1,..),
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where, for every h = 0,1, ...,n—1, the numbers p,; are the solution of the
difference equation

(15) phi—'z ViPhi =0 (E=mn,n+1,..)
=

with initial conditions
(16) Pri=20y; (#=0,1,...,72—1).

Proof. For ¢ =0,1,...,n—1 inequalities (14) are obvious, as is
seen from the initial conditions (16). Thus it suffices to show that if for
any fixed ¢ > n we have

n—1
(17) @;_; < H d:h'i_j (1=1,2,...,m),
h=

then (14) is satisfied. That fact follows, however, from (1) and (17). Indeed,

we have
n 1
Dp 317
a<[] @, <[](]] &)

n n—
j=1 =1 h=0

n
The exponent of d, at the right-hand side is equal to ) y;p, ;_;, i.e.
=1

t0 pp;-
The difference equations (15) have only a different notation of the

unknowns. Generally, we shall write them in the form
(18) Pi— Y yPi =0 (i=mn,n+1,..).
i=1

The characteristic polynomial (2) is connected with this difference
equation. Let I'(x) have, besides of the positive zero &, the zeros &,
£3y .eey & with multiplicity equal to m,, mg, ..., m; (where m,+my+
+ ... +m; = n—1),respectively. Since y,, > 0, we have &, &,,..., & # 0.
It is known that every solution of (18) is given by the formula

k
P, = C&4 D) Q,(0) &,
j=1
where C is a constant and @, (¢) is a polynomial of the variable ¢, of degree
at most m;—1.
THEOREM 4. The solutions p,; of the difference equation (15) with
initial conditions (16) are given by

k
(19) P =&+ D e & (h=0,1,..,0—1;i=0,1,..),
i=1
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where q,;(1) is a polynomial of the variable i, of degree at most m;—1, and
where

(20) e =0b,_1 3/ I"(&) (h=0,1,...,0—1).

Proof. After what was said before stating Theorem 4, it suffices
to prove formulae (20).
The initial conditions (16) lead to the system of equations

k
(21) al+ D gy@) & =8, (=0,1,...,n—1).
i=1

Let every polynomial ¢,;(¢) be represented as a linear combination
of factor polynomials a,+a,i+a,¢(¢—1)+ ..., where, obviously, the
coefficients a,, a,, a,, ... depend upon k and j.

Treating these coefficients and ¢, as unknowns in (21), we obtain
from Cramer’s formulae the equality

(22) ¢, = det(By, &1, By, ..., 5)/det(Z, 5y, By, ..., 5p).

The symbol ,,det”’ denotes here a determinant of the matrix composed
of the blocks given in parentheses. E, is the (A4 1)-st column of the unit
matrix of order n, and

~1 0 coe 0 - -1 -

3 . 0 :

-3 = E? 25? - O ’ E: 52
L& (e—1) &Y L (n—1) ... (n—my+4-1) g1 | gn-1_

Let us introduce a column matrix X, analogous to =. From (22)
it follows that

(23) e+t ... +e,_ a7t

— det(X, 5y, Sy ore 5)/A06(E, By, Eay ..vy 5.

This equality will remain valid if in every matrix &; the columns
2,8,...,m; will be divided by §&;, &, ..., &', respectively. Then

(24) det(X, Zy, Eyy ooy Zp)

will be a polynomial of degree n—1 of the variable # which has zeros
&1y &5y ...y & with multiplicity equal to my, m,, ..., m;, respectively.
This may be seen by differentiating (24) 0, 1, 2, ... times and by substitu-
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ting ¢ = ;. Thus, with an accuracy up to a non-zero constant factor,
this polynomial is equal to

(25) I'(z)[(x— £).

The denominator at the right-hand side of (23) is equal to the value
of (25) for z = &, i.e. is equal to I(£). Hence

Cot i@t ... +0,_ 12" = (o™ '+ b2 4 ... b, )/ (&),
q.e.d.
THEOREM 5. If the roots of the polynomial I'(x) satisfy the imequalities

(26) E>1,
(27) |5j|<§ (j=1’27-°"k)

and if (4) is satisfied, then the sequence {d;} i8 convergent to 0.
Proof. From (19) it follows that

k
Pri—on & = 'fiz €rs (5 (£ §)'-
i=1

From assumption (27) there exists for every ¢ > 0 an index 7, such
that for 7 > 7, we have

(28) |Dni— €5 &Y < €&
Introduce now for positive numbers d the notation
1 (d>1),
d* =sgnlogd ={ 0 (d=1),
-1 (@@d<1).

For any r and s such that s> |r| we have
a < qair! < da*s .
Herefrom and from (28) it follows that
dpri — qone’ gpmi—ont® < gont’ qanipni=cn'l < gon+adp)ét

Thus, from (14) and (20) we obtain

n—1 n—1 )
(29) &< [ apreast = [T apn-r-nrerseais
h=0

h=0

n—1 .
_ b+ edm_ 1 p 7 (&)\ET7(8)
_(”dnh_"'l‘fglh()) .
h=0
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If ¢ is sufficiently small, then from (4) it also follows that

n-—1

[T des-wro <1,
h=0

Since & > 1 (assumption (26)) and I""(£) > 0, the exponent &/I"(¢&)
tends to 4 oo and the last member of (29) tends to 0. Hence {d;} — 0.

Let us note that from Traub’s lemma 3.1 ([2], p. 38) it follows
that {d;} tends to 0 under the following assumptions: first, if the numbers
Y1y Y2y +++9 Yo aré non-negative integers such that

(30) Y1t yat oo Fya>1
(i.e. such that (26) holds), and second, if
(31) <1l ((¢#=0,1,...,n—1).

Theorem 5 assumes, moreover, that the coefficients y; satisfy (27)
(however, see Example 2). On the other side, inequality (4), which connects
the initial elements d,, d,, ..., d,_,, is weaker than (31).

Example 2. If the numbers y,, y,, ..., ¥, are non-negative and if
the greatest common divisor of the indices of all positive numbers y;
is equal to 1, then inequality (27) holds (Ostrowski [1], p. 93, theorem 12.2).
As at least two of the numbers y,, y,, ..., ¥,, are positive, thus, if they
all are integers, inequalities (30) and (26) hold. Therefore in the now
considered case inequality (4) guarantees the convergence of the sequence
{d;} to 0.

Example 3. Let the sequence {d;} of non-negative numbers satisfy
the inequality d; < d,_,d;_,. We then have now n =2, y;, =y, =1,

@) =a*—x—1, &=31+V5), I'@)/@—E) =a+3(/5—1).

Directly from that or from the remarks made in Examples 1 and 2

it follows that if d,d{>~V2 < 1, then the sequence {d,} is bounded in
such a way that d; < max{d,, d,}, and also this sequence converges to 0.

2. Interpolation methods of solving equations. There exist many
methods of iterative computation of the root « of the equation f(z) = 0.
Among them there are interpolation methods ([2], Chapter 4) in which
the approximation z; of the root a is directly expressed by the n preceding
approximations «; ,, %;_,, ..., %;_,. In one of the variants of interpolation
methods it is assumed that x; = P(0), where the polynomial P(x) of
degree at most n— 1 satisfies the conditions

P(f(wi—j)) =& (=1,2,...,n).
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In another variant, the polynomial P(z) is determined by the condi-
tions
P(w;_;) =f(x;;)) (G =1,2,...,n)
and as x; one of the zeros of this polynomial is chosen (in particular, for
n = 2 we have here the go-called Miiller’s method of equations solving).

The behaviour of the successive approximations x; of the root a may
be in interpolation methods characterized as follows. Let 3, denote the

absolute error of the approximation ;:
6,,: = Ia—wil .

If the approximations ,, 2,, ..., z,_, belong to the interval I = {a—
—r, a+7r) in which f'(x) # 0, then the inequality

n
(32) Sa< M[] e,

j=1
holds. M is here a positive number depending upon the values of f(x)
and of its initial derivatives in the interval I, and y; are non-negative
integers with y, > 0.
Example 4. For the linear interpolation method given by

Dy y— @iy

f(@_1)—f(@;_,)

(33) o, = @y — f(®;_y)
inequality (32) is satisfied for

1 I () ,
n=2 =y, =1 M = — max |+———= [max|f (2)|®.
’ yl 72 ’ 2 zel (f (w))s zel If( )I
Assume that
n
q = 2 Yi >1.
i=1
If
(34:) di = .Mll(q—l) 6.“

inequality (32) may be expressed as (1).
Assume that d,,d,,...,d,_,, given by (34), satisfy inequality (4).
Coming back to the errors 8;, from (4) the inequality
n—1
[] r'e=vs, <1,
h=0

may be obtained or, otherwise,

n—1
(35) n 62"—1—h< M- Ggtby+...+by_1l@-1) — pr-1UE-1)
h=0
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Let us assume that the assumptions about the numbers ,, Y2y «++y ¥a
from Section 1 are satisfied. It is so, for instance, for methods in which
Y1 = Y3 = ... = Y, 18 a natural number (see Examples 1 and 2). If so,
from Theorem 2 and its proof it follows that the approximations z,,
Zp.1y --- belong to the interval I, and their errors satisfy the inequalities

n
s<M[]&n; (=nn+1,..),
i=1

which are similar to (32). It follows from Theorem 5 that the sequence
{6;} is convergent to 0, i.e. the sequence {z;} is convergent to a.

The quality of the convergence of {z;} depends not only upon &
(i.e. upon the order of the method), thus indirectly upon the numbers n,
Y1y Y2y «++3 Vny Dutb also upon the choice of initial approximations. Taking
Theorem 5 and its proof into account, one may say that the convergence
is the better the less the product

n—1 n—1
[ la—@n_sl™ = [ [ la—a3Pn-1-2.
h=0

h=0

From this the following practical hint for the choice of approxi-
mations x,, %4, ..., #,_; follows: they are to be chosen from the interval I
containing the root a so as to minimize the expression

n—1
(36 max a— x;|’n—1-h,
) na. ,.” ja— o)

3. Minimization of the expression (36). The search for optimum
initial approximations, i.e. such ones for which the expression (36) reaches
its minimum, is a generalization of the problem the solution of which

are Chebyshev polynomials. In fact, if b, = b, = ... = b,_; = 1, then (36)
becomes
n—1
(37 max a—x)|.
) na h[_] (a— )|
If I ={-—1,1), then (37) is minimum if and only if
n=1
[[(a—a) = 27T, (a),
h=0

Le. if the set {w,,®,...,%,_,} is composed of the (arbitrarily ordered)
Dumbers

(2¢e4+1)w
Cco8 —
2n

(i=0,1,...,n—1).
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One may expect that — as in the case of (37) — the expression (36)
attains its minimum if and only if the function

n—1
A(a) = [ la— a1
h=0

of variable ¢ has equal values. being the maximum value of A4(a) in I,
in n+1 points of the interval I. This hypothesis is true if we speak of
local minimums of (36).

THEOREM 6. Function (36) of the variables x,, x,, ..., 2, _, belonging
to the interval I reaches its local minimums only for such values of these
variables for which the function A(a) has in m+1 points of the interval I
identical values, being equal to the maximum value in the interval I.

Proof. For the sake of simplicity we shall limit ourselves to the
case 7, < ;< ...< %,_,; (any other ordering of these variables would

cause a different numbering of the exponents by, by, ..., b,,_;). Since
n—1 ’ n—1
A'(a) bp_1_ A (a) b,_1_
(38) =) ‘%( )=—- o,
A(a) i a—ay A(a) s (v— @)

the function 4 (a) decreases from oo to 0 in the interval (— oo, x,), increases
from 0 to oo in the interval (z,_,, o), and has exactly one maximum
in every of the intervals

{Tgy B1) 3 B3y Dy oy {p_gy Bpy_1) -

The points in which A (a) reaches the maximum values we denote
bY Y1, Y3y -y Yn_1, Tespectively. To standardize the notation let us assume
that I = {y,, y,> (the function A4 (a), given in I, has also local maxima
at the ends of this interval).

We shall investigate now how the maximum values

(39) 6 =Ay) (k=0,1,...,n)

depend upon the variables z,,x,,...,%,_,. Of course, also the points
Y1y Yay +-+y Yn_, depend upon them; only y, and y, are constant. We shall
use differentials. We have

n—1 n-—1

Gt dey = n |90 — @ — day|"n—1-H = 6on

h=0 h=0
n—1

= €, (1— 2 SR )

— @
= Yo—Tp

b
dﬂ&‘h n—1—-h

Yo— Ty

1—

H
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thus
n—1
deo == _602’_——bn—1_hdwh .
= Yo— Ty
Analogously,
n—1
b d.
de, = —e, n—1—h @0,
h=0 Yn— %
For 1 <k<n—1 we have
n—1
dy, — dx; ['n—1-h
ot o, = AWy, +dy) = o [ [| 1422
s Ye— Tn
b 3 b, . ,dz
=ek(1+dyk2 n-1-h _2 n—1-h h).
st Yp—Tn = Yr—Tp

Since A4’(y,) = 0, from the first formula of (38) it follows that the
first sum equals zero, and

n—1
bn—l—hdwh
de, = — ¢ —
j— Yr— %y

therefore this formula is satisfied for all ¥ =0, 1, ..., n.
First suppose that not all numbers e,,e,, ..., ¢, are identical. Let
the numbers €,y €,y -9 €,y Where m < m, be all numbers (39) being

equal to max e¢,. It is then possible to choose the n increments dx,,
0<k<n
dw,, ..., dz, , as to have de,, de, , ..., de,, negative, i.e. as to diminish

max e¢,. In that case the parameters «,,,,...,%,_, certainly do not
0<k<n

Yield the local minimum of (36).

Now, assume that ¢, = ¢; = ... = ¢,. We shall prove that it is not
Possible to choose dx,, dz,,...,dz,_,, not all equal zero, as to have
dek <0, ie.

n—1

(40) Zﬁﬂf’i>o k=0,1,...,n).
= YO

The left-hand side of (40) will be denoted by 4,. The system

n—1
by_1_1d2;

—2,=0 (k=0,1,...,n)
yk_mh k ) ? ’

h=0
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is interpreted as a system of n+1 homogeneous equations with n-1
upknowns b, _,dz,,b,_,dz;,...,b,dx, ,, —1. The determinant of the
systems equals zero:

1 1 1
A
Yo— Ty Yo— T Yo— %y,
1 1 1 2
(41) Y1— % Y1— T Y1— 2y, '1=0.
1 1 1
An
Yn— % Yn— % Ypn— Tp_y

Expansion of this determinant with respect to the last column
leads to an expression form which it may be shown that 4, =4, = ...
= A, = 0. We shall make use of the formula for a Cauchy determinant
1 1 1
—& M— & No— &m

1 1 1 H (&n— &) ” (7:— ma)

— £ __ 0h<ism o<h<ism

N — fu Nm— 51 o Nm— Em

Thus, the coefficient of 4; in the expansion of the previous determinant
is equal to

(—1)mt [l (w—a) I1 (Yi—Y»)

0<h<z<n—1 o<h<i<n; h,i#7
H 17 — @)
h=0 1=0,i%] net
(— 1)"” ” (22— ;) ” (Yi—Yn) H (%;— )
— o<h<i<n-—1 <h<i<n
—Yo) -+ U= Y1) Yi1—Y5) -+ (Yn—Y;) H H (¥:— wh)

Rejection of factors not depending upon j leads from (41) to the
equivalent equality

n—-1
n hll (y;— 21)
—" l’ = 0.
= I (ye—vy)

k=0,k#j



Optimum choice 213

Since
Yo <L <N<T < oo < B, < Yy
we have -
n-1 n
sgn [ [ (g—a) = (—1)*7, sgn [[ (w—9) = (—1).
h=0 k=0,k+7

Therefore in the previous equality all coefficients if 1, have the same
gign (—1)* and this equality holds if and only if 4, =4, = ... =1, = 0.
Then, however, (40) is a homogeneous system satisfied only if dz, = dz,
= ... =dz, =0. |

Example 5. Let n = 2. Expression (36) has then the form
(42) max |a— x|t |a— x,|.

ael

Theorem 6 will be used while searching for its minimum. Assume
for a moment that x, = 0, @, = 1. The function F(a) = |a|’1|a—1|
attains in the interval (0,1) the maximum value o = b%1/(b,+1)%1+?
in the point b,/(b,+1).

We find the roots u, <0 and u, >1 of the equation F(a) = w.
In a linear transformation of the interval {u,, #,> into the interval I
the points 0 and 1 are transformed into z, and «,, respectively. Hence,
for I = (¢, d), we have

cpy — dpg v — d(1—p)—ec(1—p,)

By = — 1

H1i— Mo H1— Mo
The minimum of (42) is equal

bbl( d—e )bl+1
! (p1— o) (b1 +1) .

In particular, in Example 3 which corresponds to the linear inter-
polation method (see Example 4) is b, = }(y5—1). Using the above
described method, one obtains here the following optimum initial approxi-
mations of the root:

(43) @, = ¢+.9012106940(d—c), @, = ¢+.2032153052(d—¢),

or, symmetrically,

(44) 2, = ¢+.0987893060(d—¢), x, = ¢+.7967846948(d—¢c).
However, the minimum of (42) is equal to

(45) 190563 (d— ¢)’1+.
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Since (35) must be satisfied, the length of the interval I and the
number M should satisfy

190563 (d— ¢)1t! < M-YE-D,
i.e.
(46) M(d—ec) < .190563'¢ ~ 2.7859.

The already mentioned theorem of Traub ([2], p. 38) guarantees
the convergence of the sequence (33) to the root a provided

Knowing about the root only that it belongs to (¢, d) and assuming
any approximations x,,«, from this interval, one should suppose that
M(d—c)< 1.

It is eagy to see that a given choice of initial approximations weakens
the conditions which should be imposed on the interval I. However,
one cannot say that in the considered example we are allowed to lengthen
2.7859 times the interval I, because that would usually increase M.

Example 6. Assume now that n =3, y, = y, =y =1 (this is
so in Miiller’s method mentioned at the beginning of Section 2). Then

£ = 1.839286755, b, =1, b, =£&—1, b,=1/¢.

Function (36) of the variables ,, #,, #, has now not two local minima,
a8 (42), but six ones, for there are six different arrangements of the initial
approximations x,, x,, z,. Here are the points in which this function
reaches its minimum (and also the minimum values):

x, = ¢+.036732638(d—c),
%, = ¢-+.373603389 (d—¢),
x; = ¢+.901124699(d—c¢),
0654258762 (d — ¢)*38¥7577
2y = ¢+.037549257(d—¢),
2, = ¢+.924682335(d— c),
z, = ¢+.4155648395(d—¢),
.0653290033 (d— ¢)***¥™77
2, = ¢+.457319437(d— ¢),
%, = ¢+.072578878(d—¢),
x, = ¢+.903027492(d—¢),
.0652918941 (d — ¢)>3897577

(47)
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The three remaining minima are obtained by replacing each of the
coefficients of d—c¢ in the formulae for z,,#,, z, by its complement.
The optimum approximations are thus given by (47) or by their equi-
valents obtained in the above sketched method.

Examples 5 and 6 show that the problem of minimizing the function
(36) has (at least) two solutions which are mutually symmetric with
regpect to the centre of interval I. This non-uniqueness may be somewhat
misleading in how to choose the optimum initial approximations, and
the problem should rather be modified.

Example 7. Consider as an illustration once more the linear inter-
polation method from Example 4. Assume z, and #; be the chosen initial
approximations. If

(48) |f (@o)| < 1f (,)]
holds, we may suspect that
(48) la— @] < |a—y],

which, of course, is not always reasonable. In case of (49) we have
la— /" Ja—1| > |a— a1 |a— |

since b, < 1. Thus, an acceleration of the convergence of the linear inter-
Polation method is possible by an (intuitive) renumeration of the approxi-
mations in such a way that the first approximation be better than the
zero one. This is done by changing the expression (42) into

(50) maxmin {|a— x|’ |a—a,|, |a— 2,|% |a— 2]}
ael

We search its minimum, as in Example 5, and obtain
(61) @, = ¢+.1793718563(d—¢c), x, = d—.1793718563(d—c).

This are the optimum initial approximations which are to be rear-
ranged in case of (48).
In point (51) the expression (50) is equal to

158742737 (d— ¢)1*!
thus is less than (45). Inequality (46) is now replaced by
M(d— o) < 3.1189.

Generally, one may advise the following procedure: The approxi-
Mations x,, #,, ..., #,_; are determined by searching the minimum of
n-1
max min n la— @, |°v-1-4,
ael {kgky,....kin—1}eK

8 — Zastosowania Matematyki 12.2



216 S.Paszkowski

where K is the set of all possible permutations %, k,, ..., k,_, of the
numbers 0,1, ...,7—1. Next we change the numeration of the approxi-
mations as to have satisfied

(52) (@)l = 1f(@1)] = ... 2 | f( @)

for the equation being solved.
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S. PASZKO WSKI (Wroclaw)

OPTYMALNY WYBOR PRZYBLIZEN POCZATKOWYCH
W INTERPOLACYJNYCH METODACH ROZWIAZYWANIA ROWNAN

STRESZCZENIE

W § 1 rozpatruje sie ciggi nieujemnych liczb {d;} spelniajacych rekurencyjne
nieréwnoéei (1), gdzie y;, ¥, ..., ¥n 83 ustalonymi liczbami nieujemnymi (y, # 0).
Pokazano, kiedy wszystkie elementy ciggu spelniaja nieréwnoéci (9) (twierdzenie 2)
oraz kiedy ciag jest zbiezny do zera (twierdzenie 5). ‘

W § 2 zastosowano wyniki § 1 do okreSlenia bledé6w przyblizen x; pierwiastka a
réwnania f(z) = 0, obliczanych metodami interpolacyjnymi ([2], rozdz. 4). Okazuje
sig, Ze przy znajomosci przedzialu I, w ktérym zawarty jest pierwiastek a, nalezy
wybraé przyblizenia poczgtkowe x,, #;, ..., Tn—1 tak, by wyrazenie (36) osiggnelo
minimum.

W § 3 podano warunki konieczne na to, by wyrazenie (36) osiggnelo minimum
(twierdzenie 6). Znaleziono takze najlepsze przyblizenia poczatkowe (43) dla metody
interpolacji liniowej oraz (47) dla metody interpolacji kwadratowej. Sformulowano
takze 2zadanie optymalnego wyboru przyblizei poczatkowych, gdy przyblizenia
Ty, Tys +o-, Tp_1 uporzadkowane s3 na poczatku tak, ze spelniaja nier6wnosé (52).



