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M/G/1 QUEUEING SYSTEM WITH “FAGGING” SERVICE CHANNEL

1. Problem formulation. This paper is devoted to the problem of
rational work of a machine operator. The psychological point of view
and an attempt of mathematical formulation of this problem is given
in [1]. In many practically interesting systems, the ecfficiency of the op-
erator is not constant in time and generally decreases as time eclapses.

Thus, in such systems “fagging” of the operator should be taken
into account; it can be interpreted in many ways, dependent upon the
character of the operator’s work. For instance, if the operator is tooling
some products, one can treat the tooling times as independent random
variables with diffecrent distributions. These distributions can reflect the
fagging of the operator.

ProBLEM A. Here we deal with service systems in which service
times necd not be identically distributed. Consider a queueing system
with Poisson input having a constant intensity 4, in which customers
are serviced by one operator. Let us number the customers according to
their arrival and let the ¢-th customer have his service time distributed
as B;(t). An interesting characteristics of the system is the number of
customers in the system at the moment ¢ which is denoted by #(¢). To
investigate this characteristies let us introduce the vector process C(t)
= {n(t), y(#)} in which the component y(?) is the number of the service
time distribution of the customer being serviced at the moment t. For
the steady-state distribution of this process to exist, it is necessary that
the renewal moments of this process exist. Define them as those moments
in which leaving customers make the system empty. Assume that the
service channcl resumes its initial efficiency, i.e. the cfficiency at the
moment ¢ = 0, at any renewal moment. That means that after rencwals
the process is independent of its past and also that the first customer
arriving after a renewal has the sérviee distribution B,(f), the sccond
one B,(t), ete. Such a system will be considered in chapter 2.

ProBLEM B. In many practical situations one must assume that the
renewal of the service channel takes some time. As it has been observed
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in [1], there can not exist a finite time interval needed for a complete
renewal of the service channel. If, in addition, its expected value is infinite,
the process {(¢) has no steady-state distribution. Since we are interested
in the steady-state distribution of ((¢), we shall not deal with this case.
We assume thus that the service channel has a finite expected renewal
time. This problem is considered in chapter 3, in which we show that it
does not lead to an essentially more general system than that considered
in problem A. Recall our assumption that the renewal of the service
channel takes place when the system is empty. Of course, this assumption
is far from what we observe in many real situations. Note, however,
that taking into account breakdowns of the service channel during its
working time (see [2] and [3]) does not lead to a more general system.
In fact, it is sufficient to assume that the customer service time is equal
to the time interval from the beginning of the service to the moment
of the customer leaving the system. Different breakdown streams and
various renewal times of the service channel can be covered by non-iden-
tical service time distributions of the customers. '

PrOBLEM C. Another modification of problem A is the assumption
that the service channel is renewed after having served k customers and
customers which have not been serviced: or which arrived during the
renewal time are lost. We show in chapter 4 that this model is a particular
case of problem A.

2. Solution of problem A.

2.1. Derivation of the fundamental equations. The analysis of the
process {(t) = {n(t), (1)} in continuous time without having it extended
to a Markov process is rather difficult. There are theorems relating the
steady-state distribution of the process {(¢) in continuous time with the
steady-state distribution of some chain (see [4]). It suffices thus to investi-
gate the steady-state distribution of the states of the process {(f) in the
discrete time.

Let {, be the moment of the n-th customer leaving the system, count-
ing from the moment ¢ = 0. We write sequences of random variables
N, = n(t,+0) and y, = y(t,—0). Here 7, is the number of customers
in the system directly after the n-th customer was leaving the system
and takes on the values 0,1, 2, ..., and y, is the number, counting from
the last rencwal, of the customer which leaves the system at the moment ¢,.
The variable y, takes on the values 1,2, 3, ...

Assume that the system is empty at the moment ¢ = 0 and that the
first customer arrives exactly at that moment. Notice that the sequence
of random variables {7,, ¥,}n1 i & homogeneous, irreducible and aperiodic
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Markov chain. This follows directly from the obvious formulae for the
one-step-transition probabilities of this chain which are equal to

. (e Gt
P{(i,j)~(k, )} —ofe T B
o) for 4, = 1,2, .00y b =d—1,4,.., | =41,
P{(0,5)(k, 1) = [ T ap, )

0

for k =0,1,2,...,j =1,2,...

The probability that the n-th customer, counting from the moment
t = 0, is the I-th customer, counting from the last renewal, and after his
exit therc remain in the system % customers, is shortly denoted by

Pn(k7l) =P{77n Zk? Vn :1} for k =O71727"" ! =1)27"'7

whereas

Po(0) = P(n, = 0) = Y P,(0,1)
=1

denotes the probability that the n-th customer leaving the system remains
it empty.

The limits of these probabilities are denoted by

P(k,l) =1lim P,(k,l) and P(0) =lim P,(0).

They exist since it is easily seen that the Markov chain {7,, y,}>_,

is homogeneous, irreducible and aperiodic.

Let
Yalz, ) = D Pk, )25 and  p(z, 1) = M P(k, )¢
k=0 k=0

be the probability generating functions of P, (k,!) and P(k, 1), respectively,
and let K;(2) = g;(A(1 —2)), where $,(2) is the Laplace-Stieltjes transform
of the service distribution of the I-th customer, counting from the last
renewal. We call this time interval Il-interval.

THEOREM 2.1. For the Markov chain {n,, y,}n-., the following recur-
rence relations are satisfied:

(2.2)  2p(e, 1) = Ki(2) [9(2, I=1)—P(0,1-1)] forl =2,3,...
and
(2.3) (2, 1) = P(0)Ky(2).
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Proof. The following equalities are easily verified:

g Ja)Er1e
2.4) P, (k, ZP f e—"‘%"lk,; dB,(u)
0 !

. (Au)F

2.5) P, (k, 1) :Pn(())f o dB,(u) for k —0,1,2,...
0

Multiplying both sides of (2.4) by 2* and summing it after & leads to

0“01 lle hay /Hl i
ZP”"‘I k Z s Pn ?’ -1 zkfe 71*“6131(1!).
— k+1-z)!
k=0 t=1 0
After simple derivations one obtains
Yui1(2, 1) = 51(1(1—2))ZP,L(75, 1—1)21,
=1

By the introduced notation, this can be cxpressed as
2y, (2y1) = Ky (2) [y,(2,1—1)—P,(0,1—1)] forl =2,3,...

Analogically, from (2.3) we obtain y,.,(2,1) = P,(0)K,(2). Since,
for every k& and [, the limits
lim P, (k,l) = P(k,l) and limP,(0) = P(0)

N—>00 n—-00

exist, the statement of theorem 2.1 follows.
One can easily show by induection that the funection y(z2,1) can be
expressed in the form

l

w(z,1) o l”k Sz’ lnk] P0,i) forl=2,3,...,

i=1 j=i+1

(2.6)
p(z,1) = P(O)Kl(z)'

While stating problem A we have said that we are mainly interested
in the distribution of the number of customers in the system. If this

distribution exists, it can be obtained from P(k ZP k,1). Denote
by w(2) the generating function of the scquence {P }k=0. Hence
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If the sequence {P(k)}s-, is a probability distribution, y(2) is the
generating function of the number of customers in the system.

2.2. Distribution of the number of services in the busy time interval.
Let us find now the probabilities P(0,1) for I = 1,2, ... Introduce the
following notation and definitions:

Let X; be a function defined on the sequence of non-negative integers
{jatn—, as follows:

x; = (Jrs oy o1 Ji) = ij

Let f(-) be the function defined on the set {(i,s): i =0,1,2,...,
s—1; s =2,3,...} such that

0 fori<s—1,
1 for: =s-—-1,

:foch;v
0

Also, let KJ(0) denote the i-th derivative of I;(2) at the point z = 0.
Note that the number Kj(0) equals the probability that in the I-interval
J customers arrive to the system.

We prove now the following

LEMMA 2. 1 If there exists the steady-state disiribution of the Markov
chain {n,, y,)5_,, the following relations are satisfied:

f(i,8) =
and let

P(0,1) =P(0)P(0,1),
I

Y
—1 l—]—frl I-—].'—J'l__z

G P0,1) = K0 Y Z \j [I e (

— jm'
J1=1 Ja=f(l—1—x},l1~1) Jl—1= f(l 1-x1_9,2) m=

for 1 =2,3,...,

4

P(0,1) = If,(0),

(ii) P(o) = XPo, il
l=
If, in addition, we assume that there exvists lim b, = b, the following
holds : oo
(iii) P(0) = (i—lb)[z’—lZP(O, i)(ib— Zb,-)]“.
i=1 j=1
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Formula (iil) is given here because in many situations it is easily
applied. This is so, for instance, when the mean service times satisfy
the condition b; = b,,, for k>0, where s is some fixed non-negative
integer.

The proof of lemma 2.1 is begun from (i). We now have from equal-
ities (2.4) and (2.5)

P0,l) =PQ1A,l-1)K,;(0) forl =2,3,...,

(2.7)
P(0,1) = P(0)K,(0).

The probabilities P(1,1) for I =1, 2, ... are now to be determined.
Introduce the following notation:

A, ; is the event that at the end of the l-interval there remain s cus-
tomers in the system;

B, is the event that during an l-interval s customers arrive to the
system;

Ci,1,5.i 18 the event that in the I+1,1+2,..., (I+s)-intervals ¢ cus-
tomers arrive to the system and that at the end of the (I-+ s)-interval
there remains only onec customer in the system.

Remark 2.1. The event (., ; indicates how customers should
arrive in order to have no renewal, i.e. no empty system, in the time
interval between the (I+1)-interval and the (I -+ s)-interval.

Because the Markov chain {7,, v,}a-: has a steady-state distribution,
P(4,,) = P(r,1) > 0 holds. The probabilities P(C;,; ;_,;/4;s_;) are under-
stood as conditional probabilities in the usual sense. From the formula
for the total probability we have

(2.8) P(1,5) = 3 P(i, DP(Coe_reifdy ),

where P(4,,) = P(i,1) = K!(0)/i!. The probability P(i,1) is deter-
mined from y(z, 1) given by (2.3).
The probabilities P(C;,, _,/4;s_;) satisfy the following recurrence
relations:
51
(2.9) P(Crpaildioni) = O k(P (Crpapmricsl i ans-d
i=1@,s+1)

for 1 =0,1,..., 8 =2,3,..., 1 =0,1,...,8—1,
(2.10) P(Cpyofdi_1s) = K, (0) for 1 =1,2,...,
(2.11) P(C11/4;_1,) = Ki(0) for 1 =1,2,...
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These formulae follow directly from the formula for the total proba-
bility. They can be proved formally by using the following formulae:

Bl,:i mAl—l,s+l—i = Al,s-i+j7

{Cl+1,s,i/Al,s+1—i}: U {(Bl+1,jnCz+-l,s—1,i~j)/Al,s+1—i}

j=1(i,5+1)
for s =2,3,...and 4 = 0,1,...,s—1.

For fixed I, s and ¢, the sets of the family described by the right-
hand side of the last equality are pairwise disjoint. Hence

PO i/A1511-0) = Z P((Bu-l,jnCl+2,s—1,i—j)/Az,s+1—i)
§=1(5,8+1)
J

= 2, P (Bl+1,j/Al,s+1—i) p (Cl+2,3—l.i—j/Bl+1,:im Al,s+1—i) .

i=15,8+1)

Since the input stream is Poissonian, we have

P(Bl+l,j/Al,s+l—i) = P(B(.x,j) = K{H(O)/j!
and
P(Cryneon,ij/BriniNAysiii) = P(Crins i /Ay snji)-

This completes the proof of (2.9). Formulae (2.10) and (2.11) follow
directly from the interpretation of the events €, ,,/4,_,,and C,,,/4,_, ,.
The use of formulae (2.7) and (2.8) and an (I —2)-fold usage of (2.9) leads
to the formula for P(0,1) given in (i). '

Remark 2.2. From the equality P(0,1) = P(0)P(0,l)forl =1, 2, ...
and from the fact that P(0) > 0 and

we have

i.e. P(0,1) form a probability distribution. From the interpretation of
the probabilities P(0,1) it follows that P(0,1) form the distribution of
the number of serviced customers during the busy period. The Markov
chain {7,, y,}n., is ergodic, therefore, the above-mentioned distribution
has a finite expected value.
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We prove now equality (ii). From (2.2) and (2.3) and from the fact
that K;(1) = 1 for every ! we have

p(l,l) =»(1,l—-1)—P(0,1—1) forl =2,3,...,
p(1,1) = P(0).
Finally, we obtain from this

(2.12) p(1,1) = P(0) Y P(0,s).

s=1

Since p(1) = 1, we have

(2.13) Dw, ) =P©0) > MPo,s) =1.
=1

~
I
—
P
i
~

In the last expression the order of summation can be changed because

-~

P(0,s)> 0 and 3 P(0,s)s < oo. Therefore,
s=1

1 =P(0) M P(0,s)s.
s=1
From the above-mentioned we obtain at last formula (ii).
It remains still to prove formula (iii). Consider such a case of problem
A in which, for any fixed s, B,., = B, ; holds for every ¢ > 1. From (2.2)
and (2.3) we have

(o]

@14) 2 Yy 0) = Y hEpe, -1~ Y REPO,1-1)+
i—2 i—2

=2 =

[e o]

+ X ka@v(e -1 = 3k (2P(0,1-1).

l=s-+1 l=s41

To underline the role of s we write

Subtracting from both sides of (2.14) the function K, ,(2)y,(2), we
obtain
s—1 s—1
29 (2) —2p(2, 1) = hoar (2)95(2) = D Fpaa ()9 (2, ) — D Rya (2)P(0, 1) —
=1 =1
s—1

— kg1 (2) D) (2, D) —Fgpa(2) Y P(0,1).

=1 l=8
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Hence
(2.15) ve(2) = (2 — K11 (2)) 7 95(2),

where

s--1 s—1
75(2) = 2P(0)K,(2)+ > Ky 1 (2) (2, ) — D) kin () P(0, 1) —
=1

=1

ko (2) Y v(2, D —Eyia(2) D P(0, 1),
l=s

=1

At the point z = 1 the left-hand side of (2.15) equals 1 and the right-
hand side is a symbol of type 0/0. Take the derivative of ¢,(2). Its value
at the point z = 1 exists and is equal to

¢s(2) = P(0) (1+2by) +Zzbl+1wlz Zzbm (0,1)—

—1”s+12 (1,1) —Abyyr > P(0, 1).

=1 l=s

We have used here the relations K;(1) =1 and K;(1) = ib;, where
b, = [ @dB,(=)
0

From formulae (2.12) and (2.13) and from the fact that

lim » P(0,1) =0

S0 1 _—g

it follows the existence of lim g,(1) and the equality

§—>00

lim ¢, (1)
8—»00

= P(0)[ 1+ 26, + jzbmfﬁ( Zlbm (0,1)— b Z.o 2 P, 1),
=1 1=l

=1 1=1

where b = lim b,,.

Changing the summation order in the second and last expressions,
we obtain

lim qJ;(l)

$—00

0)[1-|—lb1+ZP (0, ©) Zzbm Zibm (0,1) lezPO ).

i=1 i=1
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Hence
i
P0,4)( > b~ M’b)].
1=1

The above-mentioned and formula (2.15) lead to formula (iii).

Hbda

lim ¢;(1) = P(0)[1+

S—00 - i

1

2.3. Distribution of the busy time. Let the random variable T, be
an ¢-interval and let N be the number of services in the busy period. The
distribution of the random variable N has been found in lemma 2.1.
Of course, the busy time Y of the system equals

N
Y =>'T,.
t=1

The knowledge of the distributions of ¥ and of 7;, ¢+ =1,2,...,
allows to find easily the Laplace-Stieltjes transform of the distribution
of Y. It is given by

Hence, the expected value of the length of the busy time has the
form

2.4. Existence of the steady-state distribution of the Markov chain
{Nns Vu}ne1+ The analogue of the system described in chapter 1 as prob-
lem A, which additionally assumes that the input stream is Erlangian,
will be called A-system. The recnewal moments are formed here by the
moments in which a customer leaves the system remaining it empty and
directly therecafter a new arrival takes place.

A sufficient condition for the existence of the steady-state distri-
bution of the Markov chain {7,, v,}n-1, being, however, a strong assump-
tion posed on the mean service times, is the following one: Asupb, < 1,
where b, is the mean service time of the n-th customer, counting from
the last renewal. A weaker, but sufficient, condition for the Markov
chain {n,, ¥.}ne1 to be steady-state is 4 lim b, << 1. These statements

n—>o0

are immediate corollaries from a theorem which is presented in this section.
Remark 2.3. If limb, exists, the condition

n—>co

Alim b, <1

n—oo
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is necessary for the existence of the steady-state distribution of the con-
sidered Markov chain.

The assumption that the chain has also a steady-state distribution
in the case 4 lim b, > 1 leads to contradiction. In particular, consider

n—co
the case A lim b, = 1. Then, it follows from lemma 2.1, formula (iii),
n—o00

that P(0) = 0; thus P(0,1) =0 and P(k,l) = 0 which contradicts the
assumption about the existence of a steady-state distribution of the

considered Markov chain. As it will be shown later, the condition A lim b,

n-—»00

< 1, in the case where the sequence {b,},-, is not converging, is not neec-
essary for the existence of a steady-state distribution of the Markov chain

{ﬂn7 '}’n}ﬁ=l .

LeEvmA 2.2. If the input stream to an A-system has the m-th Erlang
distribution with parameter A, and if b, is the mean service time of the n-th
customer, counting from the last renewal, then a necessary condition for the
existence of a steady-state distribution of the number of customers in the
system at the moments if a customer exits is given by

A
—supb, < 1.
m g

Proof. Consider the sequence of random variables {7,, v,, v,}3,,
where 7, is the number of customers in the system directly after the
exit of the n-th customer, counting from the moment ¢ = 0, y, is the
number of the service time distribution of the »-th customer, and », is
the phase number (at the moment of the exit of the n-th customer) of
the customer which will arrive to the system after the exit of the n-th
customer. In other words, », denotes the number of customers arriving
in a Poisson stream with parameter A from the moment of the last arrival
to the moment of the n-th customer leaving the system.

Note that the sequence of random variables {7,, ., 7,}>., forms
a homogeneous, irreducible and aperiodic Markov chain. This is evident
from the following one-step-transition probabilities in the chain con-
sidered :

o0 . (lu)(l—i+1)m+r—k d
. s . — —Au B.
Py Ml 41, ) = [ e B

for i,j =1,2,...,l=¢—1,4,..., 0< Kk, r<m—1; r>k for l =¢—1;

% }.u im+r
P{(0,§, k)—(, 1,7)} =fe—ﬂu((lm_)+”_!d31(u) for 0<%, r<m—1.
0
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B; denotes here the cumulative distribution function of the service
time of the customer j, counting from the last renewal. The probabilities
of all other one-step-transitions are equal to zero.

To prove this lemina the following theorem from [3] is used:

THEOREM 2.2. For a homogeneous, irreducible and aperiodic Markov
chain with one-step-transition probability matrix P = (p;;) to have a steady-
-state distribution it suffices that there exist the number ¢ > 0, the non-nega-

tive integer t, and non-negative numbers g, Ty, ... such that
oo
. | . .
(l) Zp”wjg Tr;—e fO?" 1> 19,
Jj=0
[o @]
(ii) D piyw;< oo for i < i,.
j=0

Now, let us define the numbers i,, ¢ > 0 and the number z;;, asso-
ciated with the state (I, j, r). Let us number the states of the Markov
chain {7,, V., ¥a}oe, in the following way:

For » =0,1,..., m—1, the states (0,1, ) have numbers 0,1, ...,
m —1, respectively, the states (1,1,7) have numbers m,m+41, ...,
2m — 1, respectively, and all other states have numbers greater than
2m —1.

Let 4, = 2m —1. Write b = supb,,, d = b—5,/2, & =1 —1b/m and
¢ = ¢;min{b,, d}. "

The assumption of lemma 2.2 states that bi/m < 1; this also implies
that b; < b. Therefore, ¢ > 0.

With every state (I, j, r) let us associate the number z;;, as follows:

Lo1,r =0 for 0 <r<m—1,
Ty jr = by for 0<r<m-—1, j>2,
Xy, = b(l4-7[m) for 0-<r<m—1,1>1,

@i = adl+r/m)+b; for 0<r<m—1,1>1, j>2.

It is seen that, for every (I,3j,7), #;;,> 0 holds. Notice also that,
for 1>2, x;,,> x,;, holds. We shall show that, for the defined %,, ¢
and ;;,, inequalities (i) and (ii) of theorem 2.2 are satisfied. First, let
us show that, for the states (¢, j, k) whose numbers exceed i, = 2m —1,
inequality (i) is satisfied. Consider the case ¢ > 2. The left-hand side
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of (i) equals then

(2.16) ZP{ (i, 7, k)—>(l,j-+1, 7}‘71”17

Fo 2 (lu)(l i )mtr—k
=of 2 2 ‘ ((l—z—i—l)m-|—r k)v Trj+ lrdBj-H(“)_

I=i—1 r=(0V k) (I~7i+1)

oo m— 1

f i (lu)lm+r k
0

(lm+1 ——k) Lyt IJTlrdB)‘l'l( )

=0 r=(0V k)l

where the symbol (0\/ k)l denotes zero if 1> 0, and the number
k if 1 =0. In this case I+¢—1>1 and j+1>=2; thus 2, ;...
=d(l4+i—1+r/m)+b,. The right-hand side of (2.16) can be transformed
as follows:

00 m—1

/
doo )

b+l —1) ot
=0 +d(t—1)4——t-— I —
m my = r=(0V k)l (Im —k+7)!

e e}

4

_ » lu Im—k+r , »
"»«————dl i —1 *) b,| dB;. , (u
Z T ey ( (+z )+ 1) dB;, ()

=0 7r

Im—k
—Au (lu) " r

(Im —k+7r)dB;,,(u)

b1

m

d ~
- ;I’f’j’k—d—}-—J }./’LdB]+1(Ql) — {Ei,}-,k-—d(l - )< $i.j,k—8 < {Ei'l,k—e.
m
0

Next, consider the case ¢ =1, j> 2. Now, the left-hand side of
inequality (i) equals

oo m—1
217 Y P{(1, ], k)—>(L, §+1, 1)} a5,
1=0 r=(0V k)l
m—1 oo m—1
= 2P{(l,j,k)—>(0,j-}—1,7‘)}600’”1,,-—{-22 P{(1,j,k)>(1,j+1,7)} 21501,
r=k 1=17r=0
m—1 oo m—1
=b, ' P{1,], 5)=>(0,5+1, N} +b. D D P{1,j, B>, +1,n} +
r=Ek 1=1 r=0
oo m—1
+d > Y P{(1,], k)>(1,j+1, )} (+7/m).
1=1 r=0

3 — Zastosow. Matem. 13.4
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After simple derivations the right-hand side of (2.17) assumes the
form

oo oo m-—1
d , (l%)hn+r_
—_ —hu l dB;
b1+mof ;1 > gt (B )
oo oo m-—1
Ld d i (lu)lm-k+r
it ] 2 Gy (BB

kd d k Ab;
<b +—+—4b;,, = b1+d(ﬂ)—d(l—— ]+1)< 21,5,k — €+
m m m m

It remains to consider the case ¢ = 0 and j > 1. The states (0, j, r)
have then numbers greater than 4,. Since z,,, = 0, the left-hand side
of inequality (i) is now equal to

oo m—1
Z P{(0,5, k) (l,l,T)}fDl,]’r
=1 r=0
oo oo m-—1
1 (A0)FT r 1
=bf226 M (1) dB, (u) =~ baby + b — by <y, e
0 =1 r=0 lﬂ%%—? m

We must still verify that, for the states (¢, j, ¥) having numbers
not greater than ¢, = 2m —1, inequality (ii) holds, i.e. the expression

(2.18) Z P{,J, k)—(, s, 71)}wl,s,r

lr,s

1s finite. First, consider the states whose numbers are less than m. They
are represented by (0,1, k), where ¥ = 0,1, ..., m—1. For those states
the sum in (2.18) is extended from I = 0 to infinity and s = 1. The expres-
sion is bounded by the number Abb,/m which is, of course, finite. For the
states whose numbers are greater than m —1 and less than 2m, i.e. for
(1,1, k), where £k =0,1,...,m—1, the sum in (2.18) is extended from
I = 0 to infinity and s = 2. The expression is bounded by the number
b, +d -+ db,A/m, which also is finite. This completes the proof of lemma 2.2.

A sufficient condition for the existence of a steady-state distribution
of the number of customers in an A-system whose input is Poissonian
with parameter A will be given now.

THEOREM 2.3. If there exists a natural number m such that, for
mk

(2.19) b = sup Z b;,

k=1 j—m{k—1)+1
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2bjm < 1 holds, the Markov chain {1, , V,}u-1 has a steady-state distribution,
where b; is the mean service time of the i-th customer, counting from the last
renewal.

Proof. The A-system whose input stream is Poissonian with parame-
ter 4 will be called the first system now. Consider also the following system
with Poissonian input having the parameter A:

Only customers having numbers m(j—1)+1forj =1,2, ..., counting
from the last renewal, where m is given by theorem 2.3, remain in the
system. Assume also that customer numbered m(j—1)+1forj =1, 2, ...
has a service time equal to

mj
Y, = 2 X,,

J
t=m(j—1)+1

where X; is the service time of the customer ¢, counting from the last
renewal in the first system. Write b; = EY;. The cumulative distribution
function of Y; is denoted by B;. It has the form

B; = Byi_1y41* Bug—1y42* .- - * B,.;,

where the asterisk denotes 2 composition, and B; is the cumulative distri-
bution function of X;. Such a system will be called the second system.

Since the rejected customers have here no influence on the distri-
bution of the number of customers in the system, one can assume that
the input stream of the second system has the m-th Erlang distribution
with parameter A.

Denote by P;(0), ¢ = 1, 2, the probability that a customer leaving
system ¢ remains it empty. From the construction of the second system
it follows that P,(0) > P,(0), because the busy time interval in the second
system is stochastically not smaller than that in the first system. From
lemma 2.2 we have P,(0) > 0 since

A - -
—supb; =—b< 1.
ms%p j = -0<

This completes the proof of theorem 2.3.
The remarks which were formulated at the begin of this section follow
from theorem 2.3. In fact, if lim b, = ¢ < 1, then, for ¢ > 0 such that

Nn—>00
¢+ &< 1, there exists an n, such that, for n > n,, b,1 < ¢+ ¢/2<1 holds.
Take now m,; such that

ng

A O
—_ b1,< 0+£.
M 4=
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If we take m = n, for m, < n,, we obtain

Z m
25,0
m i=1

It follows from this that the conditions of theorem 2.3 are satisfied
for m = m,; thus the statement of theorem 2.3 is true. If m; > n,, write

C, = )'b;. Then
i=1

A A
(2.20) Sy

n T
n n

A
Cno +; (On - Cno) .

Notice that the following holds:

n— Mg

A )
- (Cﬂ, - Cn ) < - (’VI/ - nxo) Sup bi <
n 0 n .

1

(c+§)< c—{——;— for n > n,.

If we take m, such that, for n > m,, there is

A €
’/;; Cno < ~2_7

then we obtain from (2.20) for n > m, where m = max{n,, m,}, the rela-
tion
A € £

-0, < ——+—< 1.
n " 2+ck2<

We have thus found such m > n, that

l m
\ !
= 2 b, < 1.
m
i=1

2 mk
sup — 2 b;<1
E m

The inequality

i=m(k—1)+1
is also satisfied, because
mk
A 2’1
— bi < c + £ << 1.
m
t=m(k—1)+1

This, in turn, proves that the condition 4 lim b, < 1 is stronger

n—oo

than the condition Ab/m < 1 in theorem 2.3, where b is given by (2.19).
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In lemma 2.2 it was given a sufficient condition for an A-system
with Erlangian input stream to have a steady-state distribution of the
number of customers in the system. This condition can be weakened.

THEOREM 2.4. If the input stream of an A-system has the s-th Erlang
distribution with parameter A and if b, is the mean service time of the n-th
customer, counting from the last renewal, then a sufficient condition for
the existence of the steady-state distribution of the mumber of customers in

. the system is the existence of such a natural number m that if

mk
b=sup Y b,
k21 j_mik—1)+1

then Ab/ms < 1.

Proof. Let the systemm described in theorem 2.4 be called the first
system. Similarly as in the proof of theorem 2.3, we construct the second
system. In that system there remain only customers numbered m(j —1) 41,
j =1,2,..., counting from the last renewal. All other customers are
rejected. It follows from this that the input stream has the ms-th Erlang
distribution with parameter A. The j-th customer, counting from the
last renewal, which remains in the system, has a service time equal to

mj
Y, = ) X forj=1,2,..
t=m(j—1)-1

If P;(0) denotes the probability that a customer leaving system i
remains it empty, then P,(0) >> P,(0). This follows from the fact that the
busy time interval of the second system is stochastically not smaller than
that of the first system. Notice that

mj
BY, = ) b
t=m(j--1)--1

From the assumptions of the theorem it follows that

A _ Ab
———-supEY; = - < 1.
ms ms

Using lemma 2.2, we obtain the thesis of theorem 2.4.

2.5. Example of problem A. Now, we shall show how in practice the
generating function of the distribution of the number of customers in an
A-system can be found.

Assume that
0 for t <O,

) 1—exp(—pu;t) for t>0,

and also that B,,; = B, for j > 0.
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With these assumptions the generating function y(z) can be found
from formula (2.15) in which s = 2. Formula (2.15) gives the gencral
form of the generating function of the distribution of the number of
customers in the system considered as problem A in which, for fixed s,
there holds B,,; = B;., for j > 1. From (2.15) we have

(2.21) 9(2) = P(0) [K,(2)+ (¢ — K;(2)) ' Ky(2) (K, (2) — P (0, 1)) —
— (2 — Ky(2)) ' Ky(2) (1 —P(0, 1))].
3 Substituting in (2.21) K,(2) = p;/(A+u;—A2) for ¢ =1,2,3 and

P(0,1) = uy/(A+ u,) (which has been calculated from (i) in lemma 2.1),
we obtain, finally,

M
— P0)]—- _
p(2) ( )[l+,u1—lz
. B oy A2 (A + ps — A2) L
(A+ﬂ2_lz)(ﬂ+ﬂ1—)~z)(}~z2—(/7-4‘,“3)2*}‘/43)(}*"‘#1)

(At — (At py) 2+ ) (A o)
The funetion y(2) can easily be expressed as a power scries from
which P(k, 1) can be calculated. P(0) is to be calculated from (iii) as

A 1 1 A Auy (1 1\71
PO) = (1= =) |12 (—+—)—2 4 (= ] .
M3 My Mo ps  Atpa \ps o

3. Solution of problem B. Problem B differs from problem A in taking
into account the renewal of the service mechanism, i.e. one assumes
that the renewal time is a random wvariable with given distribution. Let =,
be the i-th renewal moment of the process (f), i.e. the i-th moment of
the system being empty, and let Y, be the renewal time of the service
mechanism, counting from the moment 7,4 0. Assume also that the
random variables of the sequence {Y,} are independent and have an
identical cumulative distribution function #'(). Denote by Z; the random
variable expressing the time interval from moment 7;4 0 to the moment
of the next arrival. The sequence of random variables Z,,+ =1,2 ,...,
is stochastically independent. From the assumption about the input
stream it follows that the random wvariables Z,,Z,,... have identical
distributions, i.e. are exponential with parameter A.

Considcr a system in which the service of the first customer begins

at the moment of its arrival and is equal to X .= (Y,—Z,)" +X,, where
0 if Y,—7,<0,
Y,-Z, i Y, —-Z >0.

(Y1_Z1)+ =
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Notice that the number of customers in the system at the moment
of the first customer leaving the system is equal to the number of custom-
ers in the system at the moment of the first customer leaving a system
in which the first customer waits for the end of the renewal of the service
mechanism and has a service time of length X,.

To find the distribution of the number of customers in the system
in the moments of customer exits, the results obtained for the A-system

can be used. One has only to substitute B,: = B,, where B, is the compo-
sition of the cumulative distribution functions of (¥, —Z,)* and X,, i.e.
B, = B,*(C, with C(f) being the cumulative distribution function of
(Y,—Z,)" of the form

0 for t< 0,

oy =1 =
(* A e F(@+a)de for t>0.
0

4. Example of problem C. Assume that

(1) the service mechanism works without breakdown in a time
interval equal to the sum of the service times of the first » customers,
and

(2) the service time of the i-th customer (¢ <) has the cumu-
lative distribution function

Bi(l) — 0 for t <0,
1 —exp(—ut) for t > 0.

Having the generating function of the number of customers in
the system at the moments of the exit of the first » customers, it is
c2sy to obtain that function in the case where » is & random variable.

Let us find now this generating function for r fixed. Write, for
l=1,2,..., v, = /A and ¢, = 2/(A+ ;). Using the notation from
chapter 2 and our assumptions, we obtain

Y10

(4.1) K,(z):l—_-;a and  Kj(0) = i!y,gi"!

From formula (i) of lemma 2.1 we obtain

n

(4.2) P(0,n) = ””z’@iQ(’n—l),

i=1
where Q(0) = 1, and

n-1 n—1-x; l-1-2)_o

Q(fn—l):Z 2 2 ng’m for n = 2,3, ...
i1= -

j1=1 Ja=f(l—1-23,1-1)  jj_1=f1-1-a)_5,2) m=
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Let ) denote summation extended over all sequences (iy, %9, ..., %)
V-S‘
k
which are s-element variations of the set {1,2,...,%k}. Assume also

n

Y ... equal to zero for m > n (the set of summation is empty)
i=m
The following theorem states the form of the generating function
of the distribution of the number of customers in the system at the
moment of the exit of the I-th customer, counting from the last renewal.
From the assumption that » is finite it follows P (0) > 0, i.e. the system
has a steady-state distribution of the number of customers in the queue.
THEOREM 4.1. If the cumulative distribution functions B;(t) satisfy
condition (2) and if 0 < p; << oo for 0 e <!, 1 =2,3,..., then there
hold the relations

p(2, 1) :P(0)17’(z7 1),

- [ [l [Jo-s)

=L —-—‘”1211@1}
(i) é(o,l)zwiljlﬁ(o,z— — k) ][ o [[g,

k=0 1.+1 el
Vz -k

where [-] is the entier function.
The proof of theorem 4.1 is based on induction with respect to .
For I = 2, formula (i) has the form

2 2

(4.3) v(2,2) = [[ v [[(1—=200) " es-

=1 i=1
On the other hand, calculation of y(z, 2) from (2.2) gives
(2, 2) = P(0)K,(2) (K,(2) — P(0,1))/z = P(0)p(z, 2),
where (2, 2) = w(z, 2)/P(0)
Substituting into y(z, 2) formulae (4.1) and (4.2) with appropriate [

and n, we obtain (4.3). Assume now that formula (i) holds for some
fixed I. We shall prove it for [ 4+ 1. Denote by R,(z) the expression

fy2]—1 I-1-k

N ou-z-n YN, 2 ﬂu

k=0 s=1+k
l1 k
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We have from theorem 2.1
(e, 1+1) = Ky (2) [p(2, ) =P (0, D)].

Substitution of 9 (z, I) from thcorem 4.1 and of P(0, ) and K, ,(2)
from (4.1) and (4.2) leads to

~

+

(4.4) 29 (z,1+1) ”191(17 1—z0)) { Bi(2)—Q(1—1 n (1—2g,)]-

1=1 i=

-~

Denote the function Ry(2)—Q(—1)[[(1—=zp;) by W,(2). It is

i=1

casily verified that

(4.5) IZI(l—zQ,-) — 1+§7(—_8—'1lz2 f[oJ
i=1 s=1 V-Z‘ j=1

Substitution of (4.5) into (4.4) gives
!

W,(2) = R,(z)+Q(l—1)Z yll@‘

s=1 I/s J

Transform now ,(z) to the form
[/2]-1 I-1--

(4.6) W, {5 QU—2—Fk) Z(:ls)v_“ 2> H‘-”'f}+

s=k42 7S j=1
I-1-k
l s
- ( _ 1)3—1 . i
+{Q<l—1>2———s! 2 [ [ e}

s=1 ps  t=1

[i/2]-1 k k1

2 —1) 21 )

l_ o ! [] / o o ’

Vk+1 j=1

-1-k
From (4.4) it follows
1+1

@bt = | o [ J o)

Since (2, [ 41) is an analytie function in the region |2| < 1, W,(?)
is a polynomial with respect to 2z without the free term (this follows

from the definition of ,(2)). Therefore,
[U2]1-1 k+1

(4.8) Q(—1) =Z Q—2—

k=0
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One can show that
[/21-1 -k

(4.9)  W,(2 (291—1 k) _?%—“2”9)
by

ik’

Formula (4.9) is based on the following observation:
Firstly, consider (4.6) for I = 2n, i.e. such that [1/2] = [(I+1)/2].
For k¥ =[l/2]—1 = n—1, the expression

l-1-k s
(_1)3_1 ~k—-1

2 i 2 e

s=hk+2 j=1

-8
Vici—k

is then equal to zero, since k+2 > 1—1—k. Therefore, the sum in the
first term of (4.5) is extended from k = 0 to [l/2]—2 = n —2. Substi-
tution of k: = k+1 into the first term of (4.6) gives

_1 s—-1 S
E Ql—1—k) 2 ') *k ?I I 0;.
S. J
7S j=1
I—k

s=k+1

and summation with the second term of (4.6) leads to (4.9).
Similarly, consider the case I = 2n 4 1. Substitute k: = k+1 into
the first term of (4.6). One obtains then

n -k s—
k:ZlQu—l-k)s%’l(—jf 2”9

vix?

Addition of the sccond term of (4.6) leads to (4.9). Substitution
of (4.9) into (4.7) leads to the conclusion that (i) holds for [+1, thus
also for every [ > 2.

From formula (4.8) one obtains easily (ii). It suffices to multiply

l

both sides of (4.8) by [] »; 0;.
i=1

Remark. In the case ofi exponential service times formula (ii)
of theorem 4.1 enables the calculation of l~D(O, l+1) when all f’((), 1)
for ¢+ =1,2,...,1 are known. This formula is easier to handle than
formula (i) of lemma 2.1.

COROLLARY 4.1. If o, # o; for @ # j, then, for 1 =2,3, ..., there
holds
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[/21-1 l I-1-k

@wJ>={ Punb~1—k>[]vmi28—z, S"IQS_[]&}

i=1 i=l"k s=k+1
Vl-1-k

(S S (o) 4

J#1
Proof. Using formula (i) of theorem 4.1, formula (4.1) and the

equality
! 1 !

(n(l—zei))_l = 2 95_1(],_, (0; — Qj))—ll_lzgi

i=1 i=1 j=1

which follows from the equality
l

l
(2 (”“")) | :Z (z+az-)]«;;'(—a,~) ’

=1

l
where ¢(z) = [] (2+a;), one obtains corollary 4.1.
i=1

Formula (i) of theorem 4.1 gives the generating function of the
distribution of the number of customers in the system at the moment
of the exit of the I-th customer under the assumption that 0 < u; < oo
for ¢ < 1. The distribution of the number of customers in the system
during the time when the service mechanism is able to serve customers,
which is of interest to us, can be obtained from the following generating
function of this distribution:

(4.10) (), = (2 w1, D) Y, 0,
=1 =1

where y(z,1) is given by (i) in theorem 4.1. The distribution of the
number of services in the busy period is given by

P*0,1) =P(0 Z(Zwl i) for 1<,

I wish to thank Prof. J. Yiukaszewicz for the formulation of the
problem, Dr. I. Kopocinska for critical reading of the manuseript, and
Dr. B. Kopocinski for valuable remarks.
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W. SZCZOTKA (Wroclaw)

»MECZACY SIE” SYSTEM MASOWE]J OBSLUGI TYPU M /G/1
STRESZCZENIE

Praca poswiecona jest badaniu systeméw masowe] obstugi, dla ktoryeh zakla-
danyy, ze czasy obshugi jednostek sg niczaleznymi zmiennymi losowymi, niekoniecznic
o tym samym rozkladzie. Kolejnosé. obstugi jednostek jest zgodna z kolejnoseia ich
zgloszen do systemu, natomiast czas obstugi i-tej jednostki — obliczajae od ostatniego
momentu odnowy systemu — ma dystrybuante B;. Przyjmujemy, Ze momentami
odnowy systemu sq te, w ktorych svstem zostaje pusty.

Rozpatrujemy dwa typy systeméw. W systemach typu A urzadzenie obslugujace
nie-ulega awarii ani w czasic obstugi jednostki, ani tez gdy jest wolne od obslugi jed-
nostek. W systemach typu B uwzgledniamy mozliwoéé awarii i odnowy urzgdzenia
obstugujacego. Podziatu dokonalisSmy tylko dla wygody badan, bowiem — po odpo-
wiedniej interpretacji — systemy typu B sprowadzaja si¢ do systeméw typu A.

Badaniem systemow typu A, przy zalozeniu poissonowskiego strumienia zgloszen
jednostek do systemu, zajelismy sie w rozdziale 2. Do badania procesu liczby jednostek
w systemic zastosowaliSmy metode wlozonyeh laicuchow Markowa. Badalismy wiee
charakterystyki laricucha Markowa {n,, ¥,}n=1, gdzie 7, jest liczba jednostek w sy-
stemie w momencie wyjscia n-tej jednostki z systemu, obliczajac od chwili ¢ = 0,
natomiast 7, jest numerem tej jednostki, obliczonym od ostatniej odnowy. W roz-
dziale tym udowodnilis$my twierdzenie 2.1, podajace zwigzki rekurencyjne miedzy
funkejami tworzgcymi y(z, I) prawdopodobienstw liczby jednostek w systemie typu A
w momencie wyjscia I-tej jednostki z systemu, obliczajac od ostatniej odunowy systemu.
Znalezienic jawnej postaci funkeji tworzacej u (¢) rozkiadu liczby jednostek w systemie
typu A jest dosyé trudne. W praktyce jednak czesto mozna zalozyé, ze dla pewnego
ustalonego s zachodzi B ; = Bs.; dla kazdego > 1. Dla tego zalozenia funkecja
tworzaca y(z) okreélona jest wzorem (2.15). Prosty przyklad znajdowania funkecji
y(2) przy tym zalozeniu i przy zalozeniu wykladniczosci obstug podany jest w punkcie
2.5.

Interesujacymi charakterystykami systemdéw typu A sg réwniez rozklad prze-
dzialu zajetosci systemu oraz prawdopodobieristwo, ze system jest pusty. Ot6z, jezeli
istnieje stacjonarny rozklad. liczby jednostek w systemie typu A, to wspomniane
charakterystyki danc sa wzorami (i), (ii) oraz (iii) w lemacie 2.1.
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W rozdziale 1 wspomnieliémy o pewnym zagadnieniu C, ktére polega na tym,
ze urzgdzenie obstugujace ma z géry dany czas bezawaryjnej pracy. W tym przypadku
ograniezyliémy si¢ jedynie do pewnego przykladu, tzn. przyjeliSmy, ze po zakoniczeniu r
obslug — obliczajac od ostatniej odnowy — urzadzenie obslugujace jest odnawianc,
a jednostki, ktore nie zostaly obstuzone lub te, ktére zgloszy si¢ do systemu w czasie
odnowy urzadzenia obslugujacego, sa stracone. Przy zaloicniu, Ze czasy obstug sg
wykladnicze, przyklad ten podaliSmy w rozdziale 4. WspomnicliSiny tam réwniez,
ze r moze byé dowolng zmienng losowg. Przy tych zatozeniach wzér (4.10) daje funkeje
tworzacg liezby jednostek w systemic w momentach wyjs¢ » pierwszych jednostek
z systemu, obliczajac od ostatniej odnowy. Funkcje y (s, I) okreslone sy wzorem (i)
w twierdzeniu 4.1. W twierdzeniu 4.1 mamy réwniez wzér (ii), ktory dla zatozen
z rozdzialu 4 pozwala na latwiejsze niz wzor (i) w lemacie 2.1 obliczenie prawdopo-
dobiefistw P (0, ).

Przedmiotem naszych badan w tej pracy sa réwniez warunki, dla ktérych istnieje
stacjonarny rozklad liczby jednostck w systemie typu A. Zagadnieniem tym zajelismy
si¢ w punkcic 2.4. Najmoeniejsze w tym punkecie jest twierdzenie 2.4. Méwi ono, ze
jezeli strumien zgloszen jednostek do systemu typu A jest erlangowski rzedu s z para-
metrem A, natomiast b, jest srednia czasu obstugi n-tej jednostki, obliczajac od osta-
tniej odnowy, to warunkiem dostatccznym na to, aby istnial rozklad stacjonarny

liczby jednostek w systeinie, jest istnienic liczby naturalnej m, takiej ze il;/ms <1,

gdzie b okreSlone jest wzorem (2.19).



