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ON MINIMAX SEQUENTIAL ESTIMATION OF THE MEAN VALUE
OF A STATIONARY GAUSSIAN MARKOV PROCESS

Introduction. In this paper we consider the problem of minimax
Sequential estimation of the mean value of the Ornstein-Uhlenbeck process.
The loss incurred by the statistician is due not only to the error of estima-
tion but also to the cost of observation. We prove that for a quadratic
loss function connected with the error of estimation the fixed-time plan
Is minimax.

1. Preliminaries. Let us introducc the following notation:

C[0, o) denotes the space of real continuous functions z: [0, o) — R.

Z is the smallest o-algebra of subsets of the set ([0, oo) with respect
to which the functions «(t): C[0, o) — R, ¢ € [0, c0), are measurable.

F, is the smallest g-algebra of the subsets of the set C[0, co) with
Tespect to which the functions z(s): C[0, ) -~ R, s € [0, ], are meas-
urable.

f4o is a probability measure on (C[0, o), #) dependent on the real
Parameter 6 € A c R.

Mg 4 18 the restriction of u, to the o-algebra #,.

T i8 a stopping time, i.e.

7: ([0, 00) - [0, oo],
{2(-) € C[0, o) : 7(2(")) <t} e F, 1e[0, ),
po([w(-) :7(@()) < oo}) =1 for all feA.

Let us suppose that the measure u,, is absolutely continuous with
respect to the measure fre,¢ and that the density function takes the form

d.“e,t
d.“ao,t

Where g is a continuous function and 8, is a mapping from ¢([o, o))

to R, 7 ;-measurable and right continuous uy,-almost surely with respect
to 1.

= g(t, St(w('))7 0, 00)7
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Let U =1[0,)xR=TxR, u=(t(u),y(u)eU, tu)el0, ),
y(u) € R. Let % be the o-algebra of Borel subsets of the set U. On (U, %)
we define the measure m, in the following way:

my B) = ps({@() : (v(2(), Suarp(@("))) € B})  for all Be By

Under these assumptions we can formulate the following lemma
proved in [4]:

LEMMA 1. The measure m, is absolutely continuous with respect to the
measure my and

dm,

a = g(u, 0, 0,) =g(t(u)9?/(“)’6700)-
My,

Definition 1. The %#,-measurable mapping f: U — R is called an
estimator of the parameter 0.

Definition 2. By a sequential plan we mean any pair é = (z,f)
consisting of a stopping time v and an estimator f of the parameter 6.

By L(6,f) we denote the loss function which determines the loss
incurred by the statistician if 6 is the true value of the parameter and f is an
estimator chosen by the statistician. Let c¢(t), t € [0, o), be the cost
function which represents the cost to the statistician of observing the
sample path of the process up to time {. We assume that ¢(?) is a non-
negative continuous function and lime(t) = oo. Let

t—>o00

R(6,8) = [[L(6, f(w)+e(t(w))]dme(u) = Bo[L(0, f(z, 8.)) +¢(z)].
U

The function R (0, ) is called the risk function. In the sequel we agsume
that R (0, §) < oo.
Definition 3. A sequential plan 6* = (z*, f*) is minimaz if

supR(6, 6*) = infsupR(6, 9).
(‘] ] 0

Let %2, be the c-algebra of Borel subsets of the set A. Let us suppose
that on (4, 4,) the prior probability distribution of the parameter 0 is
defined by the distribution function @(6).

Let R(6, 8) be a 4% ,-measurable function of the variable 8. Then
for a given sequential plan é the expected risk with respect to the prior
distribution @ is defined by

r(®,0) = [ R(0, 8)dD(6).
A

Definition 4. Let @ be the prior distribution function of the
parameter 6 and let f be an estimator of this parameter. Then the posterior
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risk corresponding to @ and f is given by the formula
Ty ((15(0 | t(u) = t,y(u) = y)?f)
= [ L{6, f(t(w), y(w))dD (6 | t(w) = t, y(v) = y).
A

Definition 5. A sequential plan 8 = (z,f) is called the Bayes plan
for @ if

A

r(®, ) = inf(r(®, 6)).
é

Definition 6. A sequential plan 6 = (v, f) is the fixzed-time plan
if 7 is equal with probability 1 to a constant ¢.

Definition 7. Let @ be the prior distribution function of the
parameter 6. An estimator f*' is said to be the ¢-Bayes estimator of the
parameter 0 with respect to @ if

[ L(6, ") ad (6 [ t(u) =1, y(x) = y)
A

=inf [ L(0,f(u)d®(6|t(u) =¢,y(u) =y) for all (t,y)eT xR.
/4

In our further considerations the following theorem is used:

THEOREM 1 ([1]). Suppose that for every t > O there exists a sequence
of distribution functions @, (n = 1,2, ...) for which there are corresponding
t-Bayes estimators f,° such that the posterior risk

ra(@a (01 8(w) = t,y(w) = ), £2)

corresponding to @, and f)' is independent of the value y. Moreover, suppose
that there ewists o) for which

sup Ry (6, 8)) = lim,(0,(6 | t(w) = t, y(u) = v), 1)

and there exists t, for which
o(ta) +SUp R, (6, 80) = minfe(t) +sup R, (9, &)]-

Then the fized-time plan 30 = (1, f°) is minimaz among the plans
0 = (T’f("’ S:)}-

Remark. R,(6, &) = E,L(0, &).

In the proof of Theorem 1 we need the following

LEMMA 2. Let us assume that for every t> 0 there ewists a i-Bayes
estimator f* of the parameter 0 with respect to some prior distribution @ for
Which the posterior risk r, (05(0 | t(uw) = ¢, y(u) =y), f*‘) corresponding to
D and f* is independent of the value y. Then for each sequential plan & = (z, f)
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the inequality
(@, 8)> [[et)+r(®(011(w) = t,y(u) = y), )] ar (1)

T

holds, where the measure v is defined im the proof.
Proof. We have

r(®, 8) = fdgb(e)[f( 0, f(t(w), y(w)))+e(t(w))) mo(dt(w), dy(w))|
= [ mat, dy) [[L(6, f(t(w), y(w))+e(t(w)]d®(0 | t(u) = ¢, y(u) = y).
U 0

The measure m is defined by

m(B) = [ my(B)d®(6) for all Be A,
A

By Definition 7 we can write

J Z(0, Ft(w), y(w)aD( 6 [ ¢(w) = ¢,y (u) = y)

A

> [L(0, f*(t(w), y(w)) (6 | t(u) = ¢, y(u) = y)
A
and by assumption the integral
[ L0, f*(t(w), y(w))a® (0 t(w) = ¢, y(u) = y)

A
is independent of the value y. Thus

r(®,8) = [ m(ds,dy) [ L(6,f*)ad(6|t(u) = ¢, y(x) = y)
U A
= [»(@t) [[em+ [(0,7)d®(6 | t(w) =1, y(u) = y)]m(dy|t)
r R A

= [le®+n(@(611(w) = t,yw) = y), (@),
T

where
»(dt) = fm(dt, dy)
R

or, more strictly,
v([a@, b)) = m([a,b)x R) for [a,d) < [0, ),
which completes the proof.

Proof of Theorem 1. Let us suppose that the plan 89 = (to, F9)
is not minimax. Then there exists a plan 6 = (%, f ) for which

supR(6, 8) < supR (9, 82).
(7] 0
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But, by Fatou’s lemma, Lemma 2 and by the assumptions of The-
orem 1, we have

supR(0, 8) = supr(®P, 8) > r(P,, 9)
6 [
> [ dv(t)[e(t)+7:(®a (0] tw) = t, y(w) = y), £3]
11

and, consequently,

supR(0, 8) > lim [ dv(®)[e(t)+72(2, (01 8(w) = t,9(u) = 9), )]

n—so0 T

> Tf dy (1)[e(t) + sup Ry (0, 17)].
Further,
Tf v (t) [c(t)-l-SLlPRl(e,f:O)]
>Tf v (1) [o(te) +5up Ry (6, /)] = sup R(6, &).

Thus we obtain

supR(0, 67) < supR(0, §) < supB(6, &),
7] 0 0

which contradicts the assumption.

2. Minimax sequential estimation of the mean value of a stationary
Gaussian Markov process. Le¢t us consider a stationary Gaussian Markov
Process (Ornstein-Uhlenbeck process) with unknown mean value 6 and
correlation function

B(t,s) = exp[—[Blt—s|]], £>0.

This process generates the measure u,, ([2], p. 63-69). In [3] it is
Proved that the measure u,,; is absolutely continuous with respect to the
measure u, , for 6, = 0 and

¢
dl‘o,z _ 62 ﬂt 0
dug; exp[—7(1+ 7) +§(x(0)+m(t)+ﬂ0fw(s)ds)],

Where z(s) is 2 sample path of this process, belonging to 0([0, oc)). Here
We have

11
8ife()) = 2(0)+2(t)+5 [ z(s)ds.
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By Lemma 1, the measure m, is absolutely continuous with respect
to the measure m, and

2

01
[t

dmo
(Jlm,,0

s
2

0
(wyexp | - tw) -+ 9] = 900, 0,00 = gw10),

fecd = R.

We prove the following
THEOREM 2. Let L(0,f) = (f— 0)* and let

E(6, d8) = EO[I‘(Byf(T; Sr))+c(7)]'

Then there exists a fizved-time plan éf," = (%o, f' %) which i8 minimax
Jor the estimation of the mean value of the Ornstein- Uhlenbeck process.

Proof. Assume that the sequence of prior distributions is given
by the sequence of density functions

Vi, B 6
‘pn(e) = 2'/;; exp[—'—2—tn—2—]-

Then the density of the posterior probability distribution of the
parameter § takes the form

0
oal0 11wy = 1, y(u) = y) — — 20D 0, 0, 09 (0)

[ g(tw),y(w), 6, 65)p,(6)a6

-~ 00

6* B 0
eXp[—?l(1+ b (t+tn)) +3 y]

+o00 02 ﬁ 0
- L —qyldb
_i exp[ 5 (1+ 5 (t+t,.)) +3 y]
Further we obtain

VB(t+1t,)+2
— X
2l/1t

y’ (14 B his o
Xe’q’[' 4[ﬂ(t+tn)+2]]exp['?( HEA ")) +’2‘”]'

Let us consider the estimator f)* of the form

@u(0 | t(u) =1, y(u) = y) =

+ o0

Wit y) = [ 6p.(01t() =1, y(u) =y).
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We obtain

BE+1,)+2

The posterior risk for this estimator takes the form

rl(q’(olt(u) =t,y(u) = 9), :t)

B f [ (t+tn)+2 “’] ?a(011(u) = 1, y(u) = y)ao

_ 1 exp[_ yz ] VB(t+1,)+2 y
[B(t+1,)+2] 4[B(t+1¢,)+2] 2V

n(,?/)

+ o0 02 ‘3 0
f ly—6(p(t+1)+2)] exp [—7(1+ 3 (t+tn>) +3 y]de

___ 2
T B+t)+2

Thus the posterior risk corresponding to @, and to the t-Bayes esti-
mators f)f(«) is independent of y. Let us consider the estimator

8y
pt+2

f(g (t5 St) =

with the risk

S 2 2
R0, 8) = B 55 0| =5

Taking ¢, = 1/n, we obtain

y
ple+1/n)+2

:t(t’ y) =
with
7a(en (01 t(u) = ¢, y(u) = Y)s fa )

_ 2 2
COBEHIm)+2  pr+2

We can choose some #, for which

= supR,(0,f}) as n—> oo.
0
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Therefore, all the assumptions of Theorem 1 are fulfilled and we
conclude that the plan

8 — (105, £ty 8y) — 0
0 02J0 /) 0 0 tO ﬂto+2,

is minimax for the parameter 6 in the class of sequential plans 6 =

= (79 f(z, Sr))-
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MINIMAKSOWA ESTYMACJA SEKWENCYJNA WARTOSCI SREDNIE]
STACJONARNEGO GAUSSOWSKIEGO PROCESU MARKOWA

STRESZCZENIE

W pracy rozwaza si¢ zagadnienie minimaksowej estymacji sekwencyjnej wartosei
sredniej stacjonarnego gaussowskiego procesu Markowa, gdy strata poniesiona przez
statystyka zwigzana jest nie tylko z bledem estymacji, ale takze z kosztami obserwacji
procesu. Udowodniono, ze dla kwadratowej funkeji strat, zwigzanej z bledem estymacji,
plan o stalymn czasie obserwacji jest minimaksowy.



