ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
20, 3 (1990), pp. 435 443

C. BREZINSKI (Lille)

BORDERING METHODS AND PROGRESSIVE FORMS
FOR SEQUENCE TRANSFORMATIONS

Abstract. Most of the scalar and vector transformations can be unified in
the same framework. An economical computational scheme, based on the
bordering method for solving recursively a system of linear equations, is
Presented for these transformations. Such a scheme is fundamental in the
Progressive forms of the algorithms used for implementing these sequence
transformations. Usually these progressive forms are numerically more stable
than the normal forms as shown by an example.

1. Introduction. Sequence transformations are used to accelerate the
Convergence. In most of them the members of the transformed sequence are
given as a ratio of two determinants. This is due to the fact that the solution of
a system of linear equations is implicitly involved in the computation as shown
in [3] for a particular case. As every sequence, the transformed sequence
depends on an index n but, in our case, it also depends on the size k of the
determinants appearing in the ratio that is the dimension of the underlying
linear system. Thus sequence transformations transform the sequence to
accelerate into a set of sequences whose members depend on two indices:
n (numbering the successive members of the transformed sequence) and
k (numbering the various transformed sequences obtained).

It is well known that a numerical analyst is unable to compute the value
of a determinant since it needs too many arithmetical operations and because
of the rounding errors due to the computer’s arithmetic. Thus there exist
recursive algorithms for computing the members of the transformed sequences
for all k and all n without computing the determinants involved in their
mathematical expressions (see [9] for a review). In some applications all these
Quantities are not needed but one wants to fix the index n (most of the time to
zero) and to compute the members of the transformed sequences for
k=0,1,2,... It is of course possible to use the general algorithm but it is

436 C. Brezinski

uneconomical since many unneeded quantities are also obtained and the
amount of work is much larger than necessary. It is possible to reduce it by
using a bordering method since the dimension of the underlying system of
linear equations increases with k at each step. Such an idea was already used
for Shanks’ transformation [2]. It gave rise to economical methods for
computing diagonal sequences of Padé approximants and continued fractions.
It was also extended to a generalisation of Shanks’ transformation for
sequences of vectors [6]. Since this time quite a number of new transformations
were obtained. Some of them deal with scalar sequences, some others with
vector sequences or, more generally, with sequences of elements of a vector
space.

It is the purpose of this paper to extend the bordering method to these
new transformations and then to use it for their implementation by the
so-called progressive forms.

2. Sequence transformations. Let E be a vector space on K (R or C), ¢;
elements of E, and b; and 4|’ elements of K. We consider R, € E defined by
(1) R, = agep+ ... + o4,
where the os (which depend on k) are the solution of the system of linear
equations
aobo_"_ e +akbk == 1,
aoad®+ ... +o.af? =0,

(2)

€o €y
a'® a®
a® ... aP
3) R = — , k=0,1,...,
‘ by by
a® a%
a® a

where the determinant in the numerator denotes the element of E obtained by
expanding it with respect to its first row by using the classical rules for the
expansion of a determinant.

Most of the sequence transformations actually used are of this type. Let us
review them and begin by the case E = C. As explained in the introduction, the
index n is always kept fixed.

Sequence transformations 437

E-algorithm [7]: with
& =S8,+i, af’=gn+i) and b, =1

We obtain

Many sequence transformations are particular cases of the E-algorithm:
Shanks’ transformation (that is the e-algorithm), polynomial (Richardson) and
Tational (Thiele) extrapolation, Padé approximation, G-transformation, Ger-
Main-Bonne transformation, etc... |

Composite sequence transformations [10]: let t;: (S,)—= (™) be various
Sequence transformations. For a fixed index I, if we set

e, =t aP =AY and b, =1,
then
R, = I'Ii'c(")
a8 defined in [10].
Formal orthogonal polynomials [6]: with
e; = xi, af,-i) =Citvj—1 and b,=1
We obtain
R, = Py(x)
With the normalisation P.(1)=1.
w-algorithm [23]: with

& =0apsi, 0P =ayyi4j, by=1 and b =0 forix1
We have
R, = w§).

fq, =~ 4"S;, then we recover Shanks’ transformation again. Let f be a function
assumed to be differentiable as much as necessary. For the choices a, = f"™(t)
and q, = f®™(f)/n! we obtain, respectively, the confluent forms of the e-algorithm
Wi = &x(t)) and of the g-algorithm (W} = 04 (t). See [3] for a review.

The confluent form of the E-algorithm [7] can also be included into this
framework. '

Let us now consider the case of an arbitrary topological vector space E.
We shall denote by {-,-> the bilinear form of the duality. In practical
dpplications E = CP.

Topological E-algorithm [7]: with

eo = S
Where y is an arbitrary element of the dual space E’,
af) = <y, Ag,(n+j—1)) for i > t, by=1 and b,=0fori>1,

We obtain

e,=gin) for iz 1, af =<y, 4S,4;-1),

n?

R, = EP.

438 C. Brezinski

The Wimp generalisation of the topological E-algorithm [20], which uses
a sequence (y,) instead of a fixed y, can also be included into this framework.
The same is true for a transformation due to Germain-Bonne [14] and for
some other transformations described in [5].

Topological e-algorithm [1]: it is a generalisation of Wynn’s scalar
g-algorithm which, contrarily to the vector ¢-algorithm, can be expressed in the
above determinantal form. For

€= Sn+i’ a.(ji) = <y’ ASn+i+j—1> and b, =1

i
we obtain
R, = &5}
H-algorithm [12]: with

e =Snri» a=gn+i) and b;=1
we have
R, = HP.

The g;s are now scalars while, in the topological E-algorithm, they were
elements of E.

Recursive projection algorithm [8]: for
eo=y, e=xforizl,
a? =<z;, y>, aP=<z;,x) for i1,
bo=1 and b;=0forix>1
we obtain
R, = E,.
The compact recursive projection algorithm (CRPA) is recovered with
& =Xp+i» @Y =(z;,Xp1>, by=1 and b;=0forix1.

In that case R, = e{”. With the same choice for the ;s and the a{’’s but with
b;=1 for i >0 we obtain a variant of the CRPA, namely
R, =&P.
Vector composite sequence transformations and the related fixed point
methods [17] can also be expressed as above.

3. The bordering method. Let us first recall the bordering method as
described in [13]. Let A, be.a square regular matrix of dimension k, g, a scalar,
u, and v,, respectively, a coliimn and a row vector of dimension k. We consider
the bordered matrix of dimension k+1:

A, u
¥ P =[Uk ak:I-
k k

Sequence transformations 439

We have
ADL = (Ak_1+Ak_1ukvak— Y8y "'Ak_luk/ﬁk)
+1 = -
— v, Ai l/ﬁk 1/,

Let z, be the solution of 4,z, = d,. Then, using the expression of 4,1, we
€an obtain the solution of the bordered system

d
Ak Z =d =(k),
+1«k+1 k+1 ‘f;‘

Where f, is a scalar, in the form

@ et = (‘f;)] l“k). |
k

The use of this formula needs the computation and the storage of A; 1.
This drawback can be avoided by computing q, = — A, 'y, also by a bor-
~ dering method. Let k be fixed and let us denote by ¢{° the solution of

4iql> = —uf), where uf? is the vector formed by the first i components of u,.
Thus uf® = 4, and ¢ = g; for all i. The bordering method for this system leads
to the following scheme:

—

() L @) / (i)
5 g+ _ [Tk | _HUi+1 T U4 (4 . B
(S) di —(0) atv.g" 1) i=1,...,k—1,

Where w,;,, is the (i+1)-st component of u,. We have

gt = q4 = “‘Ak_luk
in (4).

The bordering method (4), (5) can be applied directly to the system (2).
Since f, =0 for k> 1 and d, = 1, (4) reduces to a simpler expression. The
Vector z, , , thus obtained has components a,, ..., &, and then R, is computed
by (1), which gives a recursive method for the ratios (3) for k=0, 1, ...

For some particular algorithms such as the scalar and topological
&-algorithms, orthogonal polynomials and Padé approximants the general
bordering method given above can be simplified due to the special structure of
the linear system (2) and some improvements of the bordering method {[2], [6],
[19]). Ratios of the form (3) and the bordering method are connected
With determinantal identities used in deriving recursive algorithms for their
Implementation and with the Schur complement of a matrix [12].

4. Progressive forms of the algorithms. In Section 2, we saw that most of
the ratios R, also depend on the second index n. In these cases let us denote

440 | C. Brezinski

them by R{ and display them in a two-dimensional array:
RY =S,
RV =5, RY
RP=S, RP RY
RP =S, RP RY RY

For all these cases there exist recursive algorithms which, starting from the
initial column, compute recursively all the R{ from the left to the right and
from the top to the bottom. However, most of them suffer from numerical
instability. A method for possibly avoiding this instability is to start from the
first diagonal RY, R, RY, ... instead of the first column. This trick was first
used for the qd-algorzthm, an algorithm very much similar to those described
here, and it was called its progressive form [16] (see also [15]). The same trick
can be used for all the algorithms of the form (3): we first compute the diagonal
R{, RO, RY, ... by the bordering method (4), (5), and then the other R{” are
obtained by the progressive form of each algorithm. Of course, in using such
a bordering method it is of main importance to check its numerical stability.
However, in some applications the first diagonal RY’, R, RY, ... can be
obtained in the closed form, thus avoiding' this problem.

Let us now show an example of the advantage of using the progressive
form of an algorithm instead of its normal form. We shall study the case of
Wynn’s scalar e-algorithm [21] which fits in our framework after a slight
modification. This algorithm is a recursive procedure for implementing Shanks’
transformation [18]. We consider the ratios of determinants

S, oo Syen
4s, P I
ASn+k~"1 ASn+2k—1

e = = €(S,)
1 |
48, . AS, s
ASy -1 ASp+ 2k -1

and eJ), | = 1/e,(4S,). These quantities are related by the normal form of the
e-algorithm:

=0, P=8§ n=0,1,...,

ns

anll — 8"“+11)+[E£"+1)—8;¢n)]—1, k’ n= 0, 1, .

Sequence transformations 441

As above these quantities are displayed in a two-dimensional array as follows:

&% =0
&) = So
et =0 e
e = 8§, e
£ =0 et
W5, W
& =0 e
=5, @

e

The normal form of the e-algorithm allows us to compute all the & from
the two initial columns. If the first diagonal is known, all these quantities can
also be obtained by the progressive form of the algorithm:

gt =+, -t k,n=0,1,..
For the particular case S, = (n+ 1) ! it can be proved that, for all k and n,
&N =1)k+1)(n+k+1),
e = —(k+1D)k+2)(n+k+1)(n+k+2)/2,

thus providing a good example for checking the numerical stability of the
algorithm.

If the normal form of the e-algorithm is applied to this sequence, then the
following conclusions hold:

In the computation of &%}, ,,

¢ and &J.FY have log,,(n+k+2) common decimal digits;

enr) and [4e§)]! have —log,,(1—2/k) common digits.

In the computation of &5}, ,,

&M, and 5ty have —10g10(2/(n+k+3)) common decimal digits;

eft D and [4e§).,]7! have opposite signs.

For the progressive form the conclusions are:

In the computation of £§),,,
e and 54 have loglo(k+2) common digits;
ey and [—eW] ! have —log,q(1—2/(n+k)) common digits.

8 ~ Zastos, Mat. 203

442 C. Brezinski

In the computation of &§,,,

€50+, and 5.1 have —log,,(2/(k+3)) common digits;

S and [ef 8 —efl.,17! have opposite signs.

Thus all the computations conducted with the progressive form are more
stable than the corresponding ones with the normal form. The programming of
the progressive form can be realized by descending anti-diagonals as follows:
let us assume that one such diagonal is known (for example: &, &, £,
et and £§"); we add the next term of the first diagonal (¢f’); we compute the
next descending anti-diagonal (s3", ¢, &5, ¢{* and &§”) replacing successively
the terms of the old anti-diagonal by the new ones as soon as they are
computed. The same computation scheme can be applied to the other
algorithms described above.

In the ¢-algorithm the quantities ¢5),, are intermediate computations
which are not very useful. They can be eliminated, thus leading to the so-called
cross rule for the e-algorithm [22]:

E=C4+[(N-C) '—=(W=C) ' +(§—C) 17!

with C =5V, N=¢f), S=¢0'2, W=¢0"2 and E =0, ,.
This normal cross rule can be replaced by its progressive form:

§=C-[N-O'—(W-0)'—(E—0O)"1]"!

which is more stable than the normal one when applied to S, =n+1)"%

Let us mention that when two neighbouring quantities in the table are
equal (or almost equal), it is possible to jump over the singularity (or the almost
singularity which induces instability) by using some particular rules which can
be obtained from Schur’s formula [11] (see [3] for a review of such rules and
[4] for the corresponding subroutines).

References

[1] C. Brezinski, Généralisations de la transformation de Shanks, de la table de Padé et de
le-algorithme, Calcolo 12 (1975), pp. 317-360.

[2] — Computation of Padé approximants and continued fractions, J. Comput. Appl. Math-
2 (1976), pp. 113-123.

[3]1 — Accélération de la convergence en anal yse numérique, Lecture Notes in Math. 584, Springe?,
Heidelberg 1977.

[4] — Algorithmes d’accélération de la convergence, Etude numérique, Technip, Paris 1978.

(51 — Surle calcul de certains rapports de determinants, in: L. Wuytack (Ed.), Padé Approximation
and its Applications, Lecture Notes in Math. 765, Springer, Heidelberg 1979.

[6] — Padé type approximation and general orthogonal polynomials, ISNM Vol. 50, Birkhiuser,
Basel 1980.

[7] — A general extrapolation algorithm, Numer. Math. 35 (1980), pp. 175-187.

[8] — Recursive interpolation, extrapolation and projection, J. Comput. Appl. Math. 9 (1983)
pp. 369-376.

[91 ~ Convergence acceleration methods: the past decade, ibidem 12-13 (1985), pp. 19-36.

Sequence transformations 443

(10] . Brezinski, Composite sequence transformations, Numer. Math. 46 (1985), pp. 311-321.

(1] ~ other manifestations of the Schur complement, Linear Algebra Appl. 111 (1988),
pp. 231-247.

(12] — and H. Sadok, Vector sequence transformations and fixed point methods, in: C. Taylor et
al. (Eds.), Numerical Methods in Laminar and Turbulent F low, Pineridge Press, Swansea 1987,

(133 v. N. Faddeeva, Computational Methods of Linear Algebra, Dover, New York 1959.

[14]1 B. Germ ain-Bonne, Estimation de la limite de suites et formalisation de procédés
d'accélération de convergence, Thesis, Université de Lille 1, 1978.

(157 p, Henrici, Applied and Computational Complex Analysis, Wiley, Chichester 1974,

(16] K. Rutishauser, Stabile Sonderfiille des Quotienten-Differenzen- Algorithmus, Numer. Math.
5 (1963), pp. 95-112.

17] H. Sadok, Accélération de la convergence de suites vectorielles et méthodes de point fixe,
Thesis, Université de Lille 1, 1988.

18] D.Shan ks, Non-linear transformations of divergent and slowly convergent sequences, J. Math.
Phys. 34 (1955), pp. 1-42.

(191 w. F. Trench, An algorithm for the inversion of finite Hankel matrices, SIAM 1. Appl. Math.
13 (1965), pp. 1102-1107.

[20] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York 1981,

[21] P. Wynn, On a device for computing the e, (S,) transformation, MTAC 10 (1956), pp. 91-96.

[22] - Upon systems of recursions which obtain among others the quotients of the Padé table,
Numer. Math. 8 (1966), pp. 264-269.

[23] — Upon some continuous prediction algorithms, 1, Calcolo 9 (1972), pp. 177-234,

CLAUDE BREZINSKI

LABORATOIRE D'ANALYSE NUMERIQUE ET D'OPTIMISATION
UFR [EEA - M3

UNIVERSITE DE LILLE FLANDRES-ARTOIS
9655 VILLENEUVE D’ASCQ — CEDEX, FRANCE

Received on 1987.10.01

