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1. Introduction. In connection with the alternating direction impliéit
(ADI) method (see, e. g., Varga [3], p. 209) the following problem was
formulated :

For given numbers, a natural m and a real k' (0 < k'< 1), find

positive parameters 7y, 7o, -+ y Tmm Such that ‘
m
x—1;
(1) L, (k') = max [ ’ ki
K <z<1 T+ Tim

i=1

has the minimal value. 4
This problem has a unique solution ([3], p. 223).

Parameters r;, have different values in the interval (k’,1). Let
R,, = R, (k') denote the set of optimal parameters r;, = r;, (k') arranged
increasingly. The optimum rational funection

m

x—7,,
fu(@; Ry) El—[ p
. im

J=1

in the interval [k’,1] has m +1 extremal points Wi, = U, (k') at which
it attains absolute maximum values (1) with alternating signs ([3], p. 223)
With &' = gy, < Uy, < ooo < Uy, = 1.

Let U, = U, (k') be the set of extremal points u,,. For optimal
barameters r;,, we have ([4], p. 190) '

27 —1
2m

(2) Tim (') =dn[(1— )K(k);_ k], i=1,2,...,m,
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and for extremal points (see [6])

m—j
m

(3) Ui (k') = dn( K(k); k), j=0,1,...,m,

where k = V1—k?, K (k) is the complete elliptic integral of first kind
and dn(u; k) is the Jacobi elliptic function (for fundamental notions of
elliptic functions see, e. g., the book [2]).

It is very troublesome to evaluate exactly 7;, and w;,, immediately
from formulas (2) and (3). They are therefore usually replaced by approx-
imate expressions obtained by the expansions of elliptic functions into
series with respect to powers of k' ([4], p. 191). Exact algorithms are
known only for m = 2?. In the present paper, which is a short version
of the second part of paper [6], we compare numerical properties of two
such algorithms, namely of the Wachspress-algorithm ([3], p. 225) and
of the JR-algorithm [7].

The Wachspress-algorithm for determination of elements of the set
R, (k') for m = 27 will be called the W R-algorithm. In section 2 we recall
fundamental properties of parameters r;, and of the algorithms WR
and JR. In the following sections we try to explain experimentally ob-
served properties of these algorithms. The error analysis is preceded in
section 3 by some numerical examples showing the better behaviour of
the JR-algorithm than that of the WR-algorithm. In section 4 we prove
that stage T and a single step of stage IT of the WR-algorithm and one
step of the JR-algorithm are numerically stable. We suppose, therefore,
that the worse behaviour of the WR-algorithm must be caused by error
propagation from the preceding steps. The propagation of errors and the
total error are discussed in section 5 for the W R-algorithm, and in section 6
for the JR-algorithm. Thus we state among others that in the W R-algo-
rithm there appears a distincet trend in the increase of error. In the J R-algo-
rithm we observe simultaneous opposite trends, the expansion and damp-
ing of the error, which result in moderate increase of error. In section 7
we compare factors of error propagation in both algorithms. We prove
there that the factors of error propagation in the WR-algorithm are always
greater than the corresponding factors of the JR-algorithm. This implies
that the total error of the WR-algorithm has a greater estimation than
the total error of the JR-algorithm. Moreover, it will be stated that for
the total error of the element r;,(k’), determined by the JR-algorithm,
there exists an estimation independent of k', which shows the stability
of the whole JR-algorithm.

2. Properties of parameters r,,. WR- and JR-algorithms. We have

jim?*
proved in paper [7] the following
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THEOREM 1. Parameters r;,, (k') are decreasing functions of the variable k’.
Moreover, for j =1,2,...,m, we have

(1) lim 7,,(k) =0,

k=0t
(2) lim 7, (') =1,

k-1~

_dr,(k) 1 2j—1 )
—miT _ |1
(3) kllrfl— FIx 5 + cos o =),
/ 1t VA= F) L+ F) (= B) (r+ )
(4) rm+j,2m = l/ ’
1+7m

5 __¥
( ) rm—j+1,2m - rm.g.j,zm

Properties (1)-(3) will be used in section 7. Properties (4) and (5)
immediately imply (see [7]) the following algorithm determining for
m = 2P the elements of the set R, (k'):

J R-algorithm. It is known that r,; = VEk'. In order to obtain the set
R ,(k') we successively appoint from formulas (4) and (5) elements of the
sets By(k'), Ry(K), Ry(k'), ..., By (k).

Let

(6) T = Tjp, 21 = Tntjany Ra = Tn_jt1,2m
(J=1,2,...,m5 0 =1,2,4,...,2°7"),

It easily follows from formulas (4) and (5) that the elements 2, and z,
are square roots of zeros of the trinomial

(7) (14722 —2(k* +r)z+Kk*A+7) = 0.

Hence one step of the JER-algorithm is reduced to determining the
zeros of trinomial (7). This holds also for the WR-algorithm. We have
(3], p. 225)

W R-algorithm. Stage I. Sequences {a;} and {;} are obtained from
formulas

(8) Ay = k'y ﬁo =1,

a; +B;
2

Ay = ]/ai.Biy /31'+1 =

5 — Zastosow. Matem. 14.3
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Stage IL. Elements s;,, (j=1,2,...,n; n=1,2,4,...,27) are
obtained from formulas

(9) $11 = '/apﬂp = OQpy1y

(10) Snigan = Sint V(8 — 1) (85 + a7)
J=12,...,m34=p,p—1,...,1; n = 2777,

a; ﬂi—-l .

(11)

S . =

n—j+1,2n Snrsin
Elements s;,, belong to the set R, (k') for m = 27.
Let '

(12) 8 =8iny Y1 =S8uijemy Y2 = Su—jr1my € = 04

(j =172""’n; ?: =p’p—1’--o’1; n =2p_i),

Then it follows from (10) and (11) that elements y, and y, are zeros
of the quadratic trinomial

(13) y2—28y+c® = 0.

Thus one step of stage II of the WR-algorithm is equivalent to the
determination of the zeros of the trinomial (13). This will make the ana-
lysis of errors in the next sections easier.

For m = 2° we have (see [7])

Upn (k') = By (k') UU,, (k') = Uy (k') UR, (k') UR, (k') UR, (k') V... UR , (k')

which follows immediately from formulas () (1.2) and (1.3). Elements
%;, have therefore properties similar to those of the parameters r;,.
They can be determined by the algorithms JU and WU (see [6]) which
differ from the algorithms JR and WR by the fact that we begin the
determination of successive elements from elements k' and 1 for the

J U-algorithm (a,, B, for WU) instead of the element V%' (a,,, for WR)
(details are omitted). Error analysis will be performed only for the algo-
rithms J R and WR. Obviously, it concerns also the algorithms J U and WU.

3. Costs and experimental comparison of accuracy of the algorithms
JR and WR. The number of operations in the JR-algorithm is almost
two times greater than in the WR-algorithm. This is shown in the fol-
lowing table:

(!) Formulas are numbered independently in every section. If, however, the
reference is made to a formula from another section, double-numbers are used, the
first part indicating the section.
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[
= ' x | / J VT
WE 3:2P4+p-3 2P 4 3p 20— 1 2904 p
JR 5-2°0 3 2p+1 ] 20+1_ 2 2p+1 _ 1

It is, however, to remark here that in the J R-algorithm, in the process
of determining the set R, (k') for m = 2%, we obtain all the remaining
sets R,(k’), where » is the natural power of 2 smaller than m. This may
be used while we choose in the ADI-method the corresponding m which
assures a sufficient reduction of the error vector of the solution of the
system of linear equations. In the WR-algorithm we indirectly obtain
the optimal sets of powers of 2 smaller than m for the interval Lasy Bl
whereas it does not hold for the interval [k', 1].

We have compared the Wachspress WR-algorithm with the JR-al-
gorithm. Calculations, performed on the ODRA 1204 computer (almost
12-digits mantissa), proved that the JR-algorithm determines the elements
of the set R, (k') with a greater accuracy than the WR-algorithm. As
criterion of the accuracy obtained we have assumed the bahavionr of
the numerically obtained optimum functions f,(z; R,) at points of
the numerically determined set U, (k’), i.e. the examination whether
this set is the alternans of the function obtained. Since the values of
Jm (Wim; Ry) are evaluated with a great accuracy, the criterion is easily
verifiable.

Let now RW,,, UW and fW,,(x) denote the sets Rm( ")y Up(k') and the
function f,, (z, R,,), respectively, obta.med numerlcaﬂy from the algorithms
WER and WU, and let RJ,,, UJ, and fJ, () be the sets R, (k'), U, (k')
and the function f,,(x; R,,), respectively, obtalned numerically from the
algorithms JR and J U

The following table contains exa,mples for m = 8 and k" = .8 (figures
identical with figures of the former numbers are omitted):

j Ry Ud fIm for wj,e UJ,,
0 _ .799 999 999 99 +.726 754 096 22,5 —12
1 .801 720 353 62 .806 835 859 64 - 3.97

2 .815 209 061 81 .826 608 476 25 + 371

3 .840 705 875 69 .857 074 215 46 - 373

4 .875 187 871 88 .894 427 190 99 + 547
5 .914 089 449 47 .933 408 082 48 — 3 63

6 .951 581 311 75 .967 810 061 21 + 3 85

7 .981 343 360 20 .991 527 570 86 - 4 90

8 .997 854 172 44 1.000 000 000 0 + 5 36
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UWn

TWm
for ujpeUW oy,

W for wjmeUJ

W03 Otk W =O

.806 835 854 41
.806 835 825 43
.857 074 302 70
.857 074 228 53
.933 408 068 25
.933 408 987 47
.991 527 612 89
991 527 577 27

.799 999 999 99
.806 835 854 41
.826 608 476 25
.857 074 228 53
.894 427 190 99
.933 408 068 25
.967 810 061 19
.991 527 577 27
1.000 000 000 O

145 350, — 11
0
145 351, —11
0
.145 350, —11
0
145 351,511
0
145 350,, —11

145 350, —11
349 112,,—23
.145 3515 — 11
.340 072,, — 23
.145 350, — 11
.339 883,, —23
145 351,,—11
.348 039,,—23
.145 350, —11

Remark. For both algorithms the elements w,, u,, and wu, are

determined immediately from formulas: uy, = k', u,g = Vk' and Ugg = 1.
They are, therefore, charged by a smaller error than other elements.
That is why the values of the function fJ,, (x) differ at these points a little
from the values at the remaining points. The function fW ,(x) assumes
at some points of the set UW,, values equal to 0 since several elements
of the set UW,, are identical with elements of the set RW,,.

These examples imply that neither the set UW,, nor the set UJ,,
form an alternans of the function fW,, (). This is above all caused by
the errors with which elements of the set RW,, are numerically determined.
The quality of the set RW,, depends among others on the parameter &’.
If k'~ 0, then the sets RW,, are closer to the optimal set R, (k'), obviously
only, when m is not too large. The funetion fW,, assumes maximal absolute
values at points of the set UW,,. They are at most two times greater
than the maximal absolute values of the function fJ,. Hence using the
function fW,, (x), for example in the ADI-method, does not lead to much
worse results than using the function fJ,(z), the more so that in most
applications of the ADI-method the value of k' is small, and the function
fW,.(x) is then almost identical with the funection fJ,(z) if p is not too
large. The problem of numerical construction of an optimum function
is very interesting, independently of applications in the ADI-method.
The above-described experiment appears to show that the JR-algorithm
gives a better approximation of the optimum function than the Wachspress
algorithm.

Let us try to explain why the error given by the WE-algorithm is
in some cases too large. This is connected with the fact that the elements
of sequences (2.8) have the common limit

posco posoo k')2sin%t]'?

T i dt -1
(1)  lima, (k') = lim g, (k') =?U T ) .
0
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The elements of these sequences lie in the interval [k’,1]. If p is
sufficiently large, then the elements a, and 8, have the same number
of significant figures in the given arithmetics connected with the computer
used. Suppose that p is so large that

(2) Iap_ﬁpl < 2—tma’x(ap7 ﬁp)’

where ¢ is the number of digits of the binary expansion. The numbers 0p
and f, have in this arithmetics a common representation. We get, therefore,
‘the objects

811 = 812 = Sg2 = Qp.

In this pathological case the set EW,, has for m = 2” at most m /2
different elements (this is the case for m = 8 and k¥’ = .79). The number
of different elements of this set is less than m/2 since other pairs of ele-
ments a;, B; have also a common representation (e. g. for m =8 and
k' = .999 the set RW,, has only two different elements). In this case
the set RW,, does not have the properties of an optimal set. Moreover,
elements can be charged with such a great error that the ordering of
the set will be disturbed. In the given example, for m = 8 and ¥’ = 8,
the successive elements of the set EW, form no increasing sequence,
as it is theoretically assumed. In extreme cases it is at all impossible to
determine the set RW,,, since in formula (2.10) we have the root of a neg-
ative number (e. g. for m = 8 and k' = .9999). The same troubles appear
when we evaluate elements of the set UW,,.

Let us now observe the behaviour of the difference g, —a;. We give
the following examples:

+
.8 .200 000 .005 572 8 | .000 004 3 0 (2-37) — — —
.0001| .999 9000 | .4900500 | .184 3108 | .028 5793 | .000688 7 | .0000004 | O

Hence, in the most frequent applications of the ADI-method
(k' ~.0001), inequality (2) is satisfied for p = 6. The rapid convergence
of sequences (2.8) is the main cause of the bad behaviour of the W R-algo-
rithm. This will be shown in the following sections.

4. Analysis of the error of one step of the algorithms WR and JR.
We assume that the calculations are performed on a computer in floating-
-point arithmetics (see [5]), the fundamental operations of which are in
accord with summation rules

(1) flla+d) =a(l—§&)+b(1—§), &, 16l <27,
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and the remaining operations with the following rules:
fl(ab) = ab(1 —e), le] < 27,
fl(a/2) = a/2, fl(Va) =Va(l—g), lo<T-27%

The value of 7' is usually equal to 1.5 or 2. In view of the rounding
process applied on the ODRA 1204 computer, we assume ¢ = 36, though
the mantissa consists of 37 binary digits. The extraction of roots is per-
formed on this computer with double accuracy, and the result has ¢ digits
without rounding. Since the Heron-Newton sequence decreases, this
cutting-off does not increase the error. We can, therefore, assume that
in this case T' = 1/2. Equality (1) for the ODRA 1204 computer is sub-
stituted by the stronger

(3) fllatd) = (a+b)(1—e), [el<27%

An arithmetics with such a summation will be called good. Any
arithmetics for which formula (3) is not satisfied in general, will be called
worse. It is characterized by formulas

(4)
fl(a+b) =

(2)

(a+b)(1—9), |6]<27! if sign(a) = sign(+b),
a(l—e)+b, le] < 27 if sign(a) # sign(+b) and |a| > |b],
which are easily obtained from (1).

We have proved in [6] that, for both arithmetics, one step of the

algorithms WR and JR is stable. Now we will analyze only the ‘“worse”’
arithmetiecs.

Let b be the exact result, and b the value obtained in fl-arithmetics,

ie. b = b(1— &), where & is the relative error of the result.
We now determine relative errors E; and F; for numerically evalu-
ated elements of sequences (2.8). Let

‘;i':ai(l_Ei)’ /§i=ﬁi(1_Fi)7 t=0,1,...,p.
For arithmetics (4) and (2) formulas (2.8) imply
&o = Qo Bo = Bo,
& = Vaofo(l—e;) (1—01) = az(1— 01— 1),

2 ao-"‘éo
pr =5

where |e,], [6;] <27, |0l < T-27% and

(1_ 51) = ﬁ1(1— 61):

1—27¢

&1l <2"(l+ )=2-‘+2-”+2-3‘+...
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We often obtain estimations containing elements of different order
which complicates the record giving no essential information about the
value of the estimated error. In the sequel we will, therefore, retain only
the greatest essential components of estimations. This means that we

generally omit components of order 27%,2~%, ... in presence of components
of order 2~‘. We write |¢,| < 2~‘. Hence
() E,=0, F,=0, E =%E1.+917 F, =9,.

It follows from (2.8) that, in general,

@, = '/&iléi(l—ﬁi+1) (1—0:41) = '/a"ﬂ"(l_E")(l_F").(l-—e"“)(l— Cit1),

> a;+ Bi a;+B; a; B; + B F;
iy = —5—(1—6y) = T(l— Tatf (1—0d;41),
where |e;l, 16;,, <27, |l < T-27"
In view of this
E = E- F‘i 1L _"' T .
(6) s =t Fiten)tomn (i =0,1,...,p—1).
F.. o= aiEi+ﬂ?'ﬂ+6.
i+1 a; + B; i+1
Auxiliary values e; and f; are defined by
(7) 6o =0, fo=0a’e+ﬂf
_ %6t Pifs
eiy1 = e+ fi+ 1)+ T, fin _ai+ﬁi +1.

It is easy to verify, comparing (5) and (6), that |E; <e;-27" and
| < fi-27".
Since q;, f; > 0, we have

a; €; ﬂif‘i
_— < max ; .
: ‘Bi (0 ’fi)

Hence it is possible to modify sequences (7) by substituting the
expression on the left-hand side of (8) by max(e;, f;) = e;. It is, however,
empirically stated that we obtain a better consistency with elements of
sequences (7) if sequences (7) are substituted by sequences

6: =0, f: =0,
e:+1 = %(e:‘l'f:"'l)‘]‘T’ f:+1 = %(3:+f:)+17

since the left-hand side of (8) tends asymptotically to the arithmetic
mean %(e;+f;) for p—oo. It is easily seen that

e; = (—.25+.5T)+ (.75 +.5T)4
fi = (.25 —.5T)+ (.75 +.5T)4

(8)

(9)
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This implies the following estimation of relative errors of the ele-
ments a; and g; for the ODRA 1204 computer:

B <i-27%,  |F|<i-27%,

We have thus shown that sequences {a,;} and {8;} differ from sequences
{a;} and {B;} on the error level of their representation.

We will now examine the relative error given by one step of stage II
of the WR-algorithm. For numerically stable solution of the quadratic
equation (2.13) the zero obtained is the rounded true zero of the quad-
ratic trinomial which is seemingly disturbed and has the coefficients
disturbed on the error level of their representation. For “good’ arith-
metics such a result was obtained by Kahan [1] for any quadratic tri-
nomial. The discriminant of the trinomial (2.13) can be presented in the
form of a product of two factors which shows that, using the good arith-
metics, we can get a much stronger result: the zero evaluated is the several
times rounded exact zero of the trinomial (2.13) (see [6]). If we use the
“worse” arithmetics, we obtain stability of the same type as for the
“good” arithmetics and as for the quadratic trinomial, the discriminant
of which cannot be presented as the product of factors. Namely, according
to (2.12), zeros of the trinomial (2.13) are obtained from the formulas

(10) y, =s+V(s—o)(s+0),
(11) Yo = C*[Y,.
It follows from (2) and (4) that
(12) 7 =fl(s+V(s—0)(s+0))
=s(1—0)+V[s(1—0)—cl(s+0)(1—e)(1—7) (1—p),

where |8], |a, |el, |n| <27 and |o| < T-27".
Let s = s(1—o0). It follows from (12) that

(13) 9, = §+S(o‘—6)+]/(§—0)(§+0) (1—|— 5180)(1—%8—%7]—9)

(0—8)+EV(E—c)(5+¢) )
5§+ l/(§—c)(§+c)

=[§+V(_§Tcﬁ§+c)](1+ °

=71(1—x),
where |y,l, 1£] < (T+3/2)27%, and the element 7, =3+ V(s —c¢)(s +¢) is
the exact zero of the trinomial (2.13) with one coefficient disturbed on
the error level of its representation. A similar result is obtained for y,,
é c?

14 Yy, =fl{—) ==— 1A — 11— 06) = y(1— ),
(14) Y (yl) yl( 11— 0) = Y2(1—22)



Algorithms of the ADI-method 429

where [8] <2-27¢, |yl <(T+7/2)27% and y, is the exact zero of the
disturbed trinomial (2.13). Hence, for the “worse” arithmetic, the error
made in one step of stage II of the WE-algorithm can be represented by
two components: by at most several times rounding of the result and
by propagation of one rounding of the “old” element s. Thus one step
of the WR-algorithm, in which we apply formulas (10) and (11), is stable.

It is easy to verify that if we substitute (11) by the equivalent formula

y, =s—V(s—c)(s+o),

then one step of the WR-algorithm would not be stable. For details see [6].

The analysis of the error made in one step of the JR-algorithm is
similar to that of the error made in one step of the WR-algorithm since
the discriminant of the trinomial (2.7) can also be presented as a product.
It can be easily proved that for the “worse”’ arithmetics, with the addi-
tional assumption (2) that the binary expansion of the number %’ has
zeros only on positions lower than 27¢, i.e.

(15) fll1—k%") =1—-F,
evalunated from formulas

rE? VA —F) (LK) (=) (r+ &) )”2
“ :( 147 ’

2y = k'[2y;
the values 2, and 2, (see (2.6)) are equal to
a(l—y), |lwl<@E+3D)27,
=Z(1—y), Ipd<(z+37)27

z, and z, are the exact square roots of zeros of the trinomial (2.7) in which
the element r was disturbed on the error level of its representation
(F =7r(1—29), |6 <27%). If we would use the “good” arithmetics, then
the values 2, and 2, will be equal to several times rounded exact values z,
and z, (see [6]). Consequently, we have the following

COROLLARY 1. In both algorithms, one step is numerically stable in the
following sense: evaluated “new’ values are several times rounded true
values corresponding to the — perhaps a little disturbed — “old” wvalues.

Since the values numerically obtained show a good behaviour of the
JR-algorithm and a worse one of the WR-algorithm, it is to expect that
the influence of the error of the “old” element on the error of the “new”
element is for the JR-algorithm considerably smaller than for the WR-
-algorithm, which will be proved in the following sections.

2
P

(3) This additional assumption causes a certain loss of generalization, but
considerably simplifies the transformations.
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5. Propagation of the error in the WR-algorithm. Total error. Let
us now examine the influence of errorg of the elements s;, and a; on the
accuracy of the element s;,,. In section 4 we have examined the error
made in one step of the WR-algorithm. Now we deal with the propa-
gation of the error in one step.

Let s, ¢, ¥y, and y, have the same meaning as in sections 2 and 4
(see (2.12)). We assume that the element s is evaluated with the relative
error As/s, and the element ¢ with the error 4c¢/c. The propagation error
of the trinomial (2.13) will then be expressed by the formula

oy oy s\ 4ds oy ¢\ 4dec s Ads s Ae
1) L) () = +(1- 4
Y os y| s de y| ¢ y—s 8 y—s| ¢
This implies that
0y,

1

s Ae As A,
Ye % +2— = —g(s; c)T+(1+g(8; o)) P

As Ac
=~ g(8; 0)—8—'+(1-g(3; 0))—0— ,

~s —

Y Y1

where
g(s; o) & 8/1/82—02, 8 >c.

The total error of one step of the WR-algorithm is determined by
the error made and propagated. It was shown in section 4 that in case
of the “worse’’ arithmetics the errors of elements v, and y,, determined
by formulas (4.10) and (4.11), consist of several times rounding of the
result and of the propagation of one rounding of the “old” element s.
To obtain expressions for total errors of the elements ¥, and v, it is there-
fore necessary to modify formulas (2) and (3). Now, those errors are
equal to

4y,
(4) =

Y1

A
(5) Y
Y.

and formulas (4.13) and (4.14) imply that

a4s Ae
~ g(s; o) (—;—+§1)+(1—9(8; 0))7+ N1y

4s de
~ —g(s; ¢ (T‘f"fz)'*‘(l +9(8; 0))'c_+7727

3 7
(€41, Ilegz_t’ |771|<(?+T)2—l, (7] <(§-+T)2_‘.

The error propagation factor g(s; ¢) is always greater than 1. It may
cause a distinet “expansion” of the error As/s, particularly for s close
to ¢. The greatest loss of accuracy takes place in the first step of the WER-
-algorithm, since we have then s = a,,,, ¢ = a, (see (3.1)). For suffi-
ciently great p, the factor g(e,,;; a,) assumes arbitrarily large values.
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This is not to understand that in this case errors (4) and (5) are arbitrarily
large, since formula (4) gives the relationship between Ay,, 4s and Ae
only then, when the linearisation conditions are satisfied. The lineari-
sation condition will not be satisfied if in the total differential (1) the
derivatives are unbounded. For example, for m =8 and %' = .8 the
ODRA 1204 computer gave no values of g(a,,,; a,) since a floating-point
overflow was signaled (elements a,,, and a, had @ common representation).
It was, however, the set RW,, (see section 3) numerically obtained, the
elements of which are charged with a great error — only one digit is
significant — but yet it was not so great as it would follow from the
linear estimation of the error (1). This last fact does not reduce the im-
portance of expression (1) for the analysis of sufficiently little disturbances

For the given task and sufficiently strong arithmetics, the first
differential in expression (1) describes sufficiently true the dependence
of éy on A4s and Ae. '

Expressions (4) and (5) serve above all to the comparison of error
estimations in algorithms WR and JE and, therefore, the assumption
of the strong arithmetics is not an essential restriction.

Let us now investigate the total error of the element s;, ¢ RW,,. Let

(6) Wojmy Wijmy + -3 Wp_1,m
be the successive elements which are used in stage II of the WR-algorithm
to evaluate the element w,,, = $;,. Hence w;, is one of the elements
8, for n = 2°. We write
(7) Jijm = g'(wijm; ap—z‘)?
t=0,1,...,p—1;m=2%;j=1,2,...,m
From (4) and (5) we have

Nw. m Aw... Aa
(8) R o gim gijm( =+ »fi]"”‘) + (1 — £ Gijm) —— + Mit1,5m
w1.+l,jm im ap '

where [&;,] <274 9yml < (7/2+T)27% and e, is equal to +1 or —1
depending on the use of formula (4.10) or formula (4.11), respectively,
to the evaluation of the element w;,;,. To simplify the notation we
will use instead of Wy Jijms €ims Eijm A0A 7, the symbols w;, g;, &, &;
and 7,, respectively. The application of formula (8) to successive elements
of the set (6) leads to the following expression for the total error of the

element w;, = $;, = Tjme BW,,:
A = A
Tim a
(9) T 07m50+ Z E +771 zym+77pTGOJm At
Tim Opia

|
—

p
Aa —1
(Gi+l,jm - Gijm) L ’

0 Op—i

+

g

©,
I
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where

p—1
(10) Cim = Gijm (%) = [ | etmSims» ¢ =10,1,...,p—1,
l=2

Gim =1,

)
&1 <27 |l <(8.5+T)27%

It is, therefore, seen that the total error of the element r;, depends
above all on the magnitudes of the factors G, and on the relative errors
of elements o;. From (7) and (10) it follows that |Gl > |Gyl > ---
> |Gpim| = 1. Therefore, the estimation of the error (9) can be very rough.
Successive steps of stage II of the WR-algorithm do not smooth out
the loss of accuracy in the first step, for all g, are greater than 1.

The above considerations lead to the following

COROLLARY 1. Though one step of the WR-algorithm is stable (and for
a “good” arithmetics — very exact), nevertheless, the values of propagation
factors of the error G, being large, there may occur a significant increase
of the error. Elements r;, will then be evaluated with a large relative error.

6. Error propagation in the J R-algorithm. Total error. The mechanism
of error propagation of the preceding step acts in the JR-algorithm simi-
larly as in the WR-algorithm. Let r, 2,, 2, have the same meaning as in
sections 2 and 4 (see (2.6)). Let the element » be determined with an
error Ar[r, and let the parameter k' be charged with an error Ak'/k’;
the case |4k’| < k' is particularly interesting. For elements 2z, and z,,

similarly as for elements y, and v, (see (5.1), (5.4) and (5.5)), the propa-
gated error is expressed by

0z LdAr 1 oo Ak’

z—llwd('r‘,k)T 5(1—0(7, k)) —F’
(1) ,

02 k

where

It is easy to prove that

(3) d(r; ¥)>e(r; ¥)—=1)>0, kK<r<l.
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Therefore, the leading role in expression (1) is played by the term
d(r; k')(4r/r). In order to obtain the total error of the elements 2, and z,
it is necessary to consider at the same time the errors made and propagated.
Estimates (4.16) and (4.17) imply for the total errors the expressions

Az Ar 1 Ak
L d(r; B [— + &)1 —elr; k) —— +7,
21 r 2 k
(4) Az Ar 1 ak’
2 —d(r; K)|— + &)+ (L4 K))—— + 1,
2 r 2 k

where

1E4]y 162l < 27% ol < (3.B+1.8T)27%  [mal < (4.5+1.5T)27%

In view of (3), factors of error propagation d(r; k’) determine the
magnitude of the estimates of errors (4). The function d(r; k') of variable r
decreases for fixed k’. It is easy, therefore, to verify that

o1 —
1£+—__—<— for r > Vk'-

2 1+ ]/ k' 2

This may cause in some steps of the JR-algorithm the effect of

“damping’ of the error.
We now deal with the total error of the element 7;,. Let

(5) %< d(r; k)<

(6) ’vojm7 vljm? ey va—l,jm

(j=1,2,...,m; m = 27)
be the corresponding elements of the sets R,(k'), R,(k'),..., R ,_,(k')
by virtue of which the JR-algorithm finds the element v,;, = r;,e¢ RJ,,,
where v;,,¢ R, (k') for n = 2°.

Similarly as in the case of WR-algorithm (see (5.7)-(5.10)), we get
for the total error of the element r;,¢ RJ,, the expression

-1

Ar; - Ak’
(7) , ™ o (0 + Eojm) Dojmn + (Eiim + Miim) Dijm + Npjm + B O
jm i=1
where
p—1
(8) Dyn = Dy (k) = [ | tyimyj (6 =0,1,...,p—1),
1=1
Dpjm = 17
(9) Qijm, = A(Vijm; Yy Ciyjm = C(Vijm; k"),

p—1
1
Ejm = Ejm(kl) = E [Dojm + Z (1 - aijmcijm) D’i+1,1'm]7
1=0

ol S T-274  |yml <27%  Inyml < (4.5+3.5T)27%
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The term ¢, is equal to +1 or —1 according to the use of (2.4)
or (2.5), respectively, for the determination of the element v,,, ;,.

Remark. Formula (7) is obtained from (4) if we assume that
|Ak’| < k', since in this case for vy, = VEk' we have

A’Uojm 1 4%

Vojm T2 ¥

The factor E;, defines the influence of the error Ak’ on the final
error of the element 7;,. If we would not take into consideration the
errors produced in single steps of the algorithm, then the total error

of r;,, will be equal to the propagated error of initial data, i.e. to the para-
meter k’. It is empirically stated that (see [6])

0< By (k) < 1.

+0.

Hence, factors of error propagation D, determine above all the
estimate of error (7). Taking into account that the function d(r; k') is
monotonic (see [3]), we see that D, have moderate estimates. Now, if
for a fixed k' the element v, is equal to r,, (n = 2¢), then dym asSUmMeS
the greatest value among the possible values of factors d;, (I # j). But
d;,1,jm 18 In this case always smaller than .5. This implies the following

COROLLARY 1. Tendencies to the expanding and damping of errors of
single steps of the algorithm JR are im considerable degree equivalent. This
points to the possibility of the existence of a moderate estimate of the total
error of the element r;,, .

In next sections we deal with close analysis of the behaviour of
factors d, and D,;, and, moreover, they will be compared with analogous
factors for the W R-algorithm.

7. Comparison of factors of error propagation in the algorithms WR
and JR. Stability of the JR-algorithm. We assume that applying the
algorithms WR and JR gives the same element of the set R, (k'), i.e.
Wpim = Vpjm = Tim(k’). We will now compare factors of the error propa-
gation in a single step of both algorithms, i.e. the values of g;;, and d,.

THEOREM 1. For fired k' (0 < k' << 1) the elements wy, and vy, (see
(5.6) and (6.6)) satisfy, fori =0,1,...,p—1;m =22 and j =1,2,..., m,
the inequalities

1+,
(1) gijm > 2 71—_%,"_;_ dijm’
Viim l/——,;
(2) Gim > g V1=K Cijm,

tim

where Giiymy Ciim ond Ay, are defined by (5.7) and (6.9).

1
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Proof. The way taken in the algorithms WR and JR is the same, i.e.
if Wy = 81, then vy, =17, (n =2°. It is well known that

< iy <P < oee < T < 1,
Up_i < S1p < S < vve < 8pp < Ppi-

Elements s;,, form the set of optimal parameters for the interval
[ay_ss Bp_:], and elements 7, (k') that for the interval [k’, 1] (let us remark
that in fact elements s;, are also functions of the parameter k’). Let

’ ap-—‘i !
kp_;“ = .
: ﬂp—!

Transforming the interval [a;_;, f,_;] into the interv_a,]“ [kp_iy 1] we
therefore have

(3) rinlbyes) = 5
From (2.5) it follows that
() A, ~ SN
Vin (Kp_s) Y
Using (3) and (4) we get
Sin 1
(5) Gijm = m = Vi—r?
It easily follows from (2.8) that
(6) 1>k >ky 1> >k =k

The element 71, (k') is an increasing function of %’ (see Theorem 2.1),
which implies, in view of (4) and (6), that r > r, ;. , (k). Hence, from (5),
we have

1
im = 0(813 Cp_s) > = g1, (k"); %').
Giim = 9(S1m; Ap_s) ‘/1_7"3;~l+1,n(k’) ( In ’ )
From the definition of g;;, and d;, we infer that

1 + v‘ijm
V1—k'
i.e. we have proved inequality (1). In the same way inequality (2) can
be obtained, which completes the proof.
Let us now estimate the' factors appearing at d;, and Cyim 1D ine-
qualities (1) and (2). Now, Theorem 2.1 (see (2.1) and (2.2)) implies
1+, (K 1+, (k'
k-0t V1 —k'2 ko1— Y1—k'2

dijm ’

Gijm > 9l (E); K') =2
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and, moreover, we see that

14 v;m(K')
Vi—k

is an increasing function of %k'. In view of (7) and Theorem 1, this
implies that

The factor g;;y, tncreases for k'—1~ to infinity. If p is sufficiently large,
then g, is large also for other values of k', for then (see (6)) k,_; is close to 1.

From this, in view of Theorem 1, we infer the following

COROLLARY 1. The factor of error propagation in a single step of the
WR-algorithm is at least two times greater than the analogous factor for the
J R-algorithm, and for k' ~ 1 or for sufficiently large p it is incomparably
greater. The factors d;, and c;, are, however, finite.

LEMMA 1. If v, = 1, (K'), n = 2°, then

(8) lim dg, =%,
k-0t
k'—o0t
. C20—-1 w\7?
(10) kl’fﬂfl_ d”m = (4: s1n omn ?) ’
1 1 20—-1 =
11 lim e¢... = — sin —
() ko1— 2 C2l-1 = +/ 2n 2
Sin -—
2n 2

Proof. The limit (8) follows immediately from (2.1) and (2.5). Indeed,

1 1 Tioge 1
lim d,;,, = = lim ]/_1_1“__ =
k>0t 2 kot 141y, 1—(k'[r,)? 2

In the same way we prove (9).
To obtain (10) we apply (2.2) and (2.3):

o (k) — K d 9l—1 &
12 lim - =1— lim — 7, (k') = sin2 —.
(12 lm = Jim o7 i (K) = sinf— =2

In view of the definition of d,;, this implies immediately the limit (10).
Proceeding analogously we obtain (11). Indeed,
T (k') — K2 1

1 14 S2l——1
=1—— co - ).
4 2n T

lim
k'—1— 1 - k'2
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In view of formula (12) this implies (11), which completes the proof.
Thus factors d;, and c;;, are small for ¥’ ~ 0. For k¥’ ~ 1, however,
some of those factors are great, in particular for

Nevertheless, D, do not increase infinitely because of the special
mechanism of determining successive elements v, (see section 6).

The total error of WR-algorithm is expressed by (5.9), and of the
JR-algorithm by (6.7). The form of these expressions is similar. The
estimates of &; and #; are of the same order (for the JR-algorithm they
are at least one and 4 half times greater than for the WR-algorithm).
The errors Aa,_;/a,_; have estimates not smaller than the error Ak’/k’,
Therefore, using Theorem 1, we obtain

COROLLARY 2. The total error of the WR-algorithm has an estimate
greater than the total error of the JR-algorithm (often incomparably greater).

In this way the numerical predominance of the JR-algorithm over
the WR-algorithm has been shown. The above considerations imply that
the large values of @, decide in the first place upon the negative prop-
erties of the WR-algorithm. Even then, however, when the values of Giim
are moderate — which is the case for small " and p — the estimate of
the error of the WR-algorithm is greater than that of the error of the
J R-algorithm. To empirically observed cases of failure of the process of
determination of elements of the RW,, — for k' ~1 or for large D —
large values of G, correspond, i.e. a large estimation of the error. The
error analysis performed has fully explained the empirically stated prop-
erties pointing to the unstability of the WR-algorithm. The analysis
for the JR-algorithm points to its stability:

THEOREM 2. For every p there exist constants t, and K such that for
every k'e (0,1),j (j =1, 2, ..., 27) and t > 1, the relative error of the element
Tim(K')y, m = 2P, is estimated by the expression
Ar;, (E")

im (F)

Remark. Thus the JR-algorithm is stable for sufficiently strong

floating-point arithmetics.

Proof. Factors d;, and ¢;,, are continuous functions of k’. It follows
from Lemma 2 that at the ends of the interval [0, 1] they assume finite
values. Hence, for ke (0, 1), factors d,, and ¢, are bounded. Let

(13) < K-27%

(14) @ sim| < ngn < 00, eiml < ngn < 0.

As we have already mentioned (see section 5), for ¢ sufficiently large
the right-hand sides of (5.4) and (5.5) give a good approximation of relative

6 — Zastosow. Matem. 14.3
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errors. This obviously holds also for the J R-algorithm, or for formulas (6.4).
Therefore, if i, is sufficiently large for a. given p, then, for ¢ > ¢,
from (6.7) and (14) for |4k’ [k'| < K,-2~' we obtain the following estimate
of the relative error for 7' = 1:

Ar 5 K = an
m | < {2Kf+9+9 D Erie 2K+ Y 1+ Ky HKI]}z-‘,
Yim i=0 i=0 l=i+1
where

K, = ma.,xK(.l.) K, = maxK‘j}n.

) mm) .
Y] Y]

The constants K,, K, and K; depend only on p. Thus we have proved
that for any p there exist constants K and ?, such that in the ¢-digit arith-
metics (I > 1,) the relative error of the element r;, has the estimate (13)
independent of k' and j, which completes the proof.

Theorem 2 does not imply the values of the constant K. In view
of (10) we may suppose that the estimate (13) will be large. We have
empirically examined the behaviour of Dy, , and examples are given in
the following table:

k" =.8 ko= .1
i Dy Do Di3g Diyg Dy Djag Dy3g Dyyg
0 .0244 .0696 .1040 1226 .0312 .0823 A17 .1236
1 .0691 .1965 .2938 .3463 .0783 .2066 .2803 3104
2 2550 .3012 .4502 1.278 2630 .3447 .4676 1.042

We have observed that the greatest values of |Dy,| are assumed

for i = p—1and j = 2/, i.e. for this element ;,, which is the closest to V'k'.
Just for this element we come close in the last but one step of the algo-
rithm to the left end of the interval [%k’, 1] (see (10)). Most of the factors D;;,,
assume moderate, often very small values. For example, for p = 10
(m = 1024) and j = 512 for k' = .9999 we have obtained the following
values of |Dy,| (¢ =0,1,...,p—1): .001, .0028, .102, .04, .1592, .6391,
2.544, 10.17, 40.72, 162.8. It is therefore to expect that the constant
K is not too large for moderate values of p. The JR-algorithm determines,
therefore, with great accuracy the elements r;,.
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KRYSTYNA ZIETAK (Wroclaw)

BADANIE ALGORYTMOW WYZNACZANIA OPTYMALNE] FUNKCJI WYMIERNE]
Z METODY NAPRZEMIENNYCH KIERUNKOW

STRESZCZENIE

W pracy podane sa wyniki poréwnania efektywnosci algorytmu Wachspressa
i algorytmu JR (patrz [7]). Teoretyczna analiza bledéw zaokraglen wytworzonych
i przenoszonych w kolejnych krokach dla obu algorytméw poparta jest przykla-
dami numeryeznymi obliczeri wykonanych na m.c. ODRA 1204. Okazuje sie, ze
blad catkowity algorytmu Wachspressa ma wieksze oszacowanie niz blad calkowity
algorytmu JR.



