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1. In this paper we consider the random operator equation

(1) (T(w)—AD)f =g

when the random operator 7'(w) is a Fredholm integral operator with
random kernel of degenerate type. The results presented compliment
and extend those announced in [4]. In Sec. 2 we show that a Fredholm
integral equation with random degenerate kernel can be reduced to
an algebraic system of random linear equations; and consider the que-
stion of the existence, uniqueness and measurability of the solution of
the algebraic system of random linear equations. In Sec. 3 we investigate
the asymptotic distribution of the eigenvalues of the random Fredholm
operator.

2. Consider the Fredholm integral equation of second kind

2) [ K (@, y)f(y)dy— if (@) = g(a).

It is well-known (cf. Pogorzelski [6], Tricomi [7]) that if the kernel K (z, y)
is degenerate(?), that is K(z,y) is of the form

(3) E(z,y) = ) a()pi(y)
i=1

where {a;(x)}i_, and {8:(y)}i_, are two sets of linearly independent L,
(0, 1)-functions, then the integral equation can be reduced to an algebraic
system of n linear equations in » unknowns. If we put

(4) [B@f@ds =&, j=1,2,..,n,
0

(*) Sponsored by the Mathematics Research Center, The University of Wis-
consin, under Contract No. DA-31-124-AR0-D-462.

(3) Degenerate kernels are also referred to as separable, kernels of finite-rank,
or Pincherle-Goursat kernels.
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eq. (2) with kernel (3) becomes
n
(5) D) Eioj(@)— if (@) = g().
j=-‘].

If we now multiply (5) by B:(z) (+ =1,2,...,n) and then integrate, we
obtain

D b [ w(@pi(@)dw— 218 = [ pi(2)g(a)da;
j=1 o0 0

that is .
(6) Zai,e,—z&=b,-, i=1,2,...,n,
where "~ 1
(7) ai,-=6fa,-(w)ﬂi(a:)dw,
1
(8) b; = of Bi(x) g (x)dw.

Rewriting (6) in matrix form, we have
(9) (A—4I)¢ = b,

where A = (a;;) is an n» Xn matrix, and & and b are n-vectors. Hence
we see that a Fredholm integral equation with degenerate kernel reduces
to an algebraic system of linear equat.ons; and, moreover, the eigenvalues
of a degenerate kernel are the roots of the algebraic equation |[A—AI| = 0.

Let (2,7, u) be a probability measure space; and consider the
random kernel

(10) K(o,z,9) =) a0, 2)pi(y).

i=1
In (10) {o;(w, ®)}i_; is a family of (almost surely) independent L,(0, 1)-
-random functions and {8;(¥)}i—, is a set of independent L,(0, 1)-deter-

minate functions. Clearly, for every fixed z,ye<(0,1) the kernel K is
a measurable function of . Put

(11) &= [ fi@f(@de, i=1,2,...,n.

Then, proceeding as in the deterministic case, we obtain the algebraic
system of random linear equations

(12) Dlay(0)g—A =b;, i=1,2,...,n,
j=1



On Fredholm integral equations 87

where

(13) ay(0) = [ aj(w, 2)pi(2)dm, i,j=1,2,...,m,
1

(14) b; = fﬁi(m)g(w)da:, i=1,2,...,n.

The integrals in (11) and (14) are well-defined; and the Riemann-inte-
grability of

(15) [ [ Buly) Bs(2) By (@, @2) Ay dy,

where R;(z,,x,) = &{o;j(w, x,)0(w,x;)} i8 the covariance kernel asso-
ciated with the o;(w, x)-process, is sufficient to insure that the integral
in (13) exists in mean square and defines, for every pair (¢, j), a real-
-valued random variable.

Equation (12) can be rewritten as the random operator equation

(16) (A(w)—2AI)¢ = b,

where 4 (w) is a » X » random matrix with elements a;;(w) defined by (13),
and & and b are m-vectors. We remark that (16) can be interpreted as
a random operator equation in the Euclidean space R, or the Hilbert
space ly(n).

In [4] the existence, uniqueness and measurability of the solution
&(w) of (16) was established using the Spadek-Han¥ probabilistic analogue
of the Banach contraction mapping theorem. We now consider the solution
of (16) using the following result of Bharucha-Reid [2], [3] and Han§ [5]
on the invertibility of linear random. operators of the form 7 (w)—Al:
Let T(w) be a random transformation on a separable Banach space &
which is for every wef2 linear and bounded. Then, for every real number
A # 0 the set 2(1) = {w: || T(w)|| < A} e, and the random transformation
T(w)—AI is invertible for every we£(4). Furthermore, for every wef2(4)
the solution of the random operator equation (T'(w)—AI)f =g is for
every random variable g(w) with values in & given by f(w) = (T (w)—
—AI)"'g(w), and f(w) is measurable with respect to the o-algebra
Q) ~ .

A straightforward application of the above theorem enables us to
state the following result for the solution of (16): Let A # 0 be a real
number such that

©(2(2) = ,u({w: (igla%(w))llz < MI}) =1.

Then the random matrix (A(w)—lI) is invertible; and the solution
£(w) = (4 (w)—AI)"'b of (16) is (2(A) ~ «)-measurable.
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3. In this section we utilize the fact that for the eigenvalues
Ay Aoy ooy Xy of any n X n matrix A = (ay)

n n

n
k k
Z}.i = Trace(4") = 2 Zailizaizis---aikil
i=1 :

for k=1,2,...
Consider the random kernel

(17) K(w,w,y)=2ai(w,w)ai(w,y),
i=1

where the «;’s are independent random functions having the same finite-
-dimensional probability distributions. For the sake of simplicity, we
assume

(i) m(2) = E{|a;(w, x)*} < oo  for all xe[0,1],
and

1
(i) [ mi(@)dw < 0o for every k=1,2,...

0

(Stronger results under weaker conditions can be obtained by the tech-
nique used in [1].) Put

(18) E(z,y) = ¢{ai(w, v)ai(w, y)},
and assume
(19) & {ai(w, @)} =0.

In the case we are considering, the kernel (17) is almost surely symmetric
and positive-definite, since

11 n 1
I 2
[ E(,2,9)h@)hy)dody = })| [ a(w, 2)h(@)d
00 i=1 0
for any continuous function k(2). Therefore, the eigenvalues of (17) are
all real and, moreover, non-negative.
The expectation of K,

(20) ¢{K(w,x,y)} = nR(x,y),

is also a symmetric and positive-definite kernel, but in general not de-
generate.
Consider the corresponding random matrix A (w) with elements
1

(21) ai(0) = [ ai(w, v)oj(w, z)ds.

0
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Since a;(w) = aj;(w) almost surely, A(w) is symmetric. The diagonal
elements a;;(w) are independent and have the same distribution with

1

(22) ¢{a(0)} = [ R(z, x)dw = Trace(R).

0
The off-diagonal elements also have the same distribution with
(23) ¢{a;j(w)} =0
and

11
(24) ¢{ay(o)} = [ [ B*(z,y)dady.
00

The only difference between the problem investigated in [1], [8] and [9]
and the problem here considered is that in addition to the symmetry
condition there are other relations among the matrix elements; hence
they are not independent. This difference completely changes the result.
However, the elements a;;(w) are independent except if they are in the
same row or column of A (w).

Define R, = R, and the (k-1)-fold iterated kernel R, by

(25) Bi(z,y) = [ Ri_s(w,s)R(s, y)ds;
0
and
1
(26) Trace(Ry) = ka(w, x)dx.

0
Then, if the indicies i,,%;,..., % are all different,

(27) E{ai,(w)aiy, () ... a4, (o)}

1 1

= [ oo [ R(®1, @) R(@2, @5) ... R(ax, 1) A1, ... dop = Trace(Ry).
(1} 1] .

e, o’
k-fold

Consequently, for all ¥ =1, 2,...,

n
(28) lim n™* Y} {3 ()} = Trace(Rx).
N—00 i=1
Let N,(w, ) denote the number of eigenvalues of the random matrix
A (w) which are less than x. Since A (w) is positive, we have N,(w,0) =0
and N,(w, o) = n almost surely. Furthermore,

gk

(29) [daN (0, 8) = D ¥ ().

]

7
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Relation (28) can now be rewritten as

(30) lim [ a*d6{N, (o, ne)} = Trace(Rx).

n-»ooo

The convergence must be due to the fact that there are, on the average,
very many small eigenvalues — but only a few large eigenvalues.

As an example, put o;(w, ) = X;(w). Then R(z,y) = £{X;(0)} = o?,
and the eigenvalues of (17) are 4;(w) = A3(w) = ... = Ap_1(w) = 0 and

(o) = ) X?(w). From the strong law of large numbers, it follows
that  *~!

1 n k
of AN, (0, nw) = (% in(w)) — Trace(Ry)

=1

almost surely, for every ¥ =1,2,...
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