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ON THE NECESSARY CONDITION
FOR THE OPTIMALITY OF CONTROL
IN THE PROBLEM OF EVASION IN DIFFERENTIAL GAMES

1. Introduction. In the present paper we study the problem of evasion
for two controlled objects: the chaser, # € E*, and the evader, y € E,
whose motions are deseribed by the differential equations and the initial
conditions

das
(1.1) - = f(t, =, u(?),
(1.2) z(ty) = %,
and

dy
(1.3) — = 995 (1)),
(1.4) Y(to) = Yo,

where u(t)e U < E" and v(t) e V < E° are the controls of the chaser
and evader, respectively. We understand the problem of evasion in the
way it has been formulated in [9]-[11].

We consider the necessary condition for the optimality of the evader’s
control in the form of the maximum principle. The maximum principle
is generally valid for the optimal control of the chaser (see [6]). The
research of necessary conditions for the optimality of the evader’s control
in the evasion problem is equivalent to the research of mecessary con-
ditions for the optimality of control of the chased in the pursuit problem
(cf. [4] and [8]).

In [4] KelendZeridze has proved that the maximum principle is
valid for the optimal control of the evader for the case where f(t, x, %)
= Az+Bu (A and B are constant matrices), the set U is a convex poly-
hedro= placed suitably in the space E", and the function g(¢,y,v) and
the set V are arbitrary. The same author has stated the hypothesis that
the maximum principle holds for any function f(¢, #, #) and any set U
(see [5]). However, Warga proved in [12] this hypothesis to be false.
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In [11] Sportjuk has proved the maximum principle in the problem
of cvasion for the case where

fGyz,u) =A@)e+B(#)w and g(t,y,v) =C0@F)y+D(t)v,

A(t), B(t), C(t), and D(t) being continuous matrix-valued functions and
the sets U and V being compact and convex.

In the considerations concerning the maximum principle in a problem
of evasion, an essential role is played by the properties of the attainable
set of the chaser (cf. [6] and [8]). Warga showed in [12] that the closedness
of the chaser’s attainable set does not suffice for the maximum principle
to hold, and at the same time he stated the hypothesis that the closedness
and one-connectedness should suffice. In this paper we prove that the
maximum principle holds when the chaser’s attainable set is closed,
convex, and full-dimensional in E".

2. Problem of evasion and the necessary condition for the optimality
of control. Assume that in the space E™ there are given two controlled
objects # and ¥y, the motions of which are described by the differential
equations (1.1) and (1.3) with the initial conditions (1.2) and (1.4), where
to 1s a given initial moment, z, and ¥, are given initial points, ©, # ¥,,
and the functions wu(t), t,<t<t,, and »(¥), t,<t<1t,, called conirol
Junctions or controls, are measurable and bounded vector-valued functions
in the interval [%y,?,] such that %(f)e U and o(f)e V for {,<t<1y,
where U is a given subset of E” and V is a given subset of E°. We assume
that the vector-valued function f(¢, z, %) is continuous with continuous
derivatives of the first order with respect to the variables # and % on
Bt = {(t,w,u): te B, z € B", uw € E'} and the vector-valued function
g(t, vy, v) is continuous with continuous derivatives of the first order with
respect to the variable ¥y on E'*"*® = {({,9,9): te B, ye E", v e E}.

Further on, we call the point object # a chasing object or chaser for
short. The control function %(t) defined in the interval [, ;] and such
that the solution x(t) of equation (1.1) with the initial condition (1.2)
exists in the interval [¢,, ¢,] is called an admissible (in the interval [y, ;1)
control of the chaser, and the vector-valued function z(t) is called an ad-
missible trajectory of the chaser corresponding to the admissible control
% (t). The solution x(¢) of equation (1.1) defined in the interval [{,, ¢,] is
a vector-valued function z(¢) defined and absolutely continuous on
[0, 1], and satisfying equation (1.1) almost everywhere in that interval.
We call the point object y an evader object or evader for short, and in
a manner similar to that for the chaser we define an admissible (in the
interval [Z,, t,]) control v(t) of the evader and the corresponding admissible
trajectory y(t).
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Let_u(t) and »(¢) be any admissible (in the interval [Z,, #,]) controls
of the chaser and evader and let z(f) and y () be the trajectories corre-
sponding to the controls «(¢) and v(¢), respectively. Let

T ({u(®)}, {o(1)}) = min{t € [t,, ,]: 2(t) =y(H)} (MinG = o).

If T({u(®)}, {v(1)}) < oo, then we call T({u(1)},{v(t)}) the moment
of meeting corresponding to the controls «(f) and v(f). Let further

T({v(0)}) = {il{lt)f} T ({u ()}, {o(®)}),

where the infimum is taken over all controls « () of the chaser admissible
in [t,, t,]. We assume that there exists a number ¢, > 1, such that T ({'v(t)})
< oo for every admissible (in [t,,?,]) control »(t) of the evader. The
admissible (in [, t,]) control #(t) of the evader such that

T({v(®)}) = max T ({v(t)}),
{o(t)}

where the maximum is taken over all admissible (in [%,,?,]) controls
v(t) of the evader, is called the optimal control of the evader and the mo-
ment T = T({v(2)}) is said to be the optimal moment of meeting.

Let v(f) be any admissible (in [%,, {,]) control of the evader and let
¥ (1) be the trajectory corresponding to o(f). Let further y = (xq, ...y %,)
be any w-dimensional vector and let

H(x,t,y,v) = x9(,9,v) = Zngk(t7?/7”)-

k=1

Let us consider the system of linear differential equations

d; 0H (x, 1, y(1), v(t
(2.1) L= - l ;;f)v()),

t=1,...,n.

If the functions »(f) and y(¢) are given and defined in the interval
[to, t,], then the system of differential equations (2.1) with the condition
x2(t) = g, determines uniquely the absolutely continuous vector-valued
function x(t) for te [ty, t,], where 7 € [¢,,t,] and y, € E" are arbitrary
points of [t,,t,] and E", respectively.

The admissible (in [Z,, ?;]) control v(tf) of the evader is called an
extremal control in [i,, ;] if in the interval [{,, ;] there exists a nonzero
solution y(?) of the system (2.1) corresponding to the functions »(#) and
Y (1) such that the condition

(2.2) mf;XH(x(t), ¢, y(1), 'v) = H(Z(t)y t,9y(t), Iv(t))

is satisfied for almost all ¢ € [t,, ¢;]- We say that for the problem of evasion
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the maximum principle holds if an optimal control v(f) of the evader is
an extremal control in the interval [{¢,, T'], where T is the optimal moment
of meeting.

The aim of the paper is to prove that under some assumptions given
in the sequel the necessary condition for the optimality of an evader’s
control is the wvalidity of the maximum principle.

3. Basic assumptions. Now, we state the assumptions concerning the
chaser needed for the proof of the main result.

Assume that the motion of the chaser is described by the equation
(1.1) with the initial condition (1.2). We call an attainable set of the chaser
at the time ¢, > 1, the set Z, of all points @; € " such that there exists
an admissible (in the interval [{,,?,]) control «(¢) such that the corre-
sponding solution z(t) of equation (1.1) with the initial condition (1.2)
satisfies the condition z(f,) = =,.

We assume that the set U is compact in the space E™ and that either
(«) or (B) holds:

(¢) The function f(¢, z, ) is linear with respect to x, so that it is
of the form f(t,x,u) = A(t)x+b(t, v), where A(t) is a matrix-valued
funetion.

(B) The funection f(t,x,u) satisfies the following conditions:

1° There exists a constant C > 0 such that zf(¢, x, u) < C(1+ ||?)
for any t e [t,, ¢,] and for every z e E™.

2° The set f(t,x, U) = {f(t, x, u): u € U} is convex for every ¢ in
[t, t;] and for any x € E™.

3° The condition f(t, z, U) = f(¢, ',U) is satisfied for every ¢ in
[?o, ;] and for any pair of points z € X2, and 2’ € 2.

By our assumptions, the attainable set 2, of the chaser is a compact
and convex subset of E" for ¢ e [t,, t,]. This has been proved in [7] for
the case («) and in [1] and [3] for the case (B). Further, our assumptions
imply that the set X, depends continuously on ¢ for ¢ € [¢,, ¢,], i.e., t > 2, is
a continuous mapping from [t¢,,?,] into the space of compact subsets
of E" endowed with the Hausdorff metric (see [6]).

Moreover, we assume that there exists a point % e Int U such that
%(t) = u for te[ty, T] is an admissible (in the interval [¢,, T']) control
of the chaser and the matrix

T

[ X'@0)B@) B ()X~ (1) dt

to
has rank n, where T is the optimal moment of meeting, X (?) is a solution
of the matrix differential equation dX /di = A(t)X with the initial con-
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dition X (¢,) = I (I is an identity matrix), the functions

oflt, &0, 9 _ e, b0, 9)

4() = o ou

and B(%)
are continuous matrix-valued functions, where #(¢) is a solution of the
differential equation dz/dt = f(t, #, %) with the initial condition () = =,
(B’ is a transposed matrix of B). By these assumptions, the attainable
set X, of the chaser is full-dimensional in E" (see [2]).

4. Some properties of attainable sets and controls of the chaser. If the
chaser’s attainable set 2, is compact, convex, and depends continuously
on ¢ for all ¢ under consideration, the following lemmas hold:

LemMA 4.1. If 2, €2y for k =1,2,... and

limz, =2, limt, =1,
k—o0 k—o00

then z' e X,..

Lemma 4.1 follows immediately from the continuous dependence of
Z; on t and the closedness of X,.

Levva 4.2. If o, ¢ %, for k = 1,2, ... and

lim 2, =« limt, =t and 2 €,
2 ) % ¢
k—»00 k—00

then «’' € 0Z,..

Proof. First we prove that if 2’ e IntZ,., then there exist a ball B
with the centre at ' and a number 6 > 0 such that B < X, for |t —#'| < 4.

Assume that 2" eIntX, and «’ = 0. Then there exists a number
€ > 0 such that the n-dimensional open parallelepiped P of the 2™-vertices
a; = (e, +e,..., +¢), 2 =1,2,..., 2% is contained in the set Z,. If
e(2;, 2y) < ¢/2, then for any ¢ (1 =1,2,...,2") there exists a point
b; € X, such that d(a;, b)) < ¢/2, where o denotes the distance of the
Hausdorff metric and d the Euclidean distance. The point b, lies in the
Parallelepiped of the diagonal (;a;,3a;), whence }P < conv{b,: i =1,
2,...,2"}, where 3P is the parallelepiped of the vertices }a,. It follows
from the convexity of the set X, that conv{bh;: i =1,2,...,2"} c Z,.
By the continuous dependence of X, on ¢ there exists a ball B satisfying
the required conditions.

Now .let {z,} and {3}, ¥ =1,2,..., be sequences satisfying the
assumptions of the lemma. Suppose that z’ ¢ 0%,; so @’ e IntZ,. Then
there exist a ball B with the centre at ' and a number § > 0 such that
B < X, for |t—t|< 4. Since

limt, =¢ and limag, =2a,

k—-»00 k—>oc0
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we have [f, —i'|< 6 and x; € B for k sufficiently large. Hence z, €2y,
a contradiction.

Remark. The convexity of the set 2, is an essential assumption
of Lemma 4.2. Without this assumption Lemma 4.2 is false, which follows
from the example given in [12].

Let v(f) be any admissible (in [?,, ?,]) control of the evader. If the
attainable set X, of the chaser is compact, convex, and depends con-
tinuously on ¢ for t e [y, ¢;], then

T({'U(t)}) = gl(})? T({u(t)}7 {'U(t)})’

e. g. the infimum in the definition of T'({v(?)}) is attained for some admis-
sible (in [t,, t,]) control () of the chaser, which is an extremal control
in the interval [t,, T'({v(?)})] (see [6]). If the control v(f) of the evader
is optimal, then the control w(f) such that T ({u(?)}, {v(?)}) = T({v(t)})
is called the optimal control of the chaser.

5. Some properties of the evader’s controls. Now, we outline shortly
the properties of the controls which will be used in the proof of the main
result. These properties and the proofs are given in details in [8].

Let y(t) be a solution of equation (1.3) with the initial condition (1.4)
defined in the interval [t,, T'] corresponding to the given admissible (in
[to, T]) control »(t). Let 7, denote any vector placed at the point y(t).
We define the transformation 4,.: n,—n, of vectors 7., T € [i,, T'], along
the trajectory () in the following way:

d , >y og'(t, y (1), v(¢ ,
%[At,t(ﬂr)]z = Z g ( /!g:(ya) ,v( )) [At,r(nr)]af 1 = 1) ceey 1y

a=1

for te[ty, T] and A,.(n,) = n.. The transformation 4,, is defined for
any 7 and for every ¢ contained in the interval [?,, T'], and is linear and
nonsingular.

Let v € [t,, T] be any regular point of the control »(?), i.e. let

T

flg(t, v(t)) —g(t, 'v(r))]dt = 0(¢)

T—8

for an arbitrary continuous function g¢(¢,v), where ¢ > 0 and

lim o(e)

60 &

=0.

Almost all points in the interval [t¢,, T] are regular points of the
control v(t). Let ¢ > 0 be an arbitrary sufficiently small number and cen-
sider any e-modified control v,(f) (defined in [8], p. 98) of the control
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o(t) corresponding to the point 7. If y,(?) is the trajectory corresponding
to the control v,(t), then y,.(f) is determined in the interval [{,, T'] and

(5.1) Ye(t) = y () +ed, [y (v)]+o(e)

for 1<t T, where Ay(z) is a given variation corresponding to the
g-modified control v,(t). The set of variations {4y(z)} placed at the point
y(7) corresponding to all possible e-modified controls v,(?) at a fixed point
T is a convex cone with vertex at the point y(z) which will be denoted
by K®. Let us write K = A, (E®). The sets K7 are also convex
cones with vertices at the point %(T), and if 7, < 7,, then K{V
< K§?. Let

%T=UK£_;‘):

where the sum is taken over all regular points = belonging to the interval
L%, T1.

LeEMMA 5.1. If there exists a monzero vector €* such that for any wector
Ay e A'p we have e* Ay < 0, then the absolutely continuous function yx(t),
which in the interval [t,, T'] is a solution of the system (2.1) with the condition
2(T) = e*, fulfils (2.2) for almost all t € [t,, T].

The proof of Lemma 5.1 can be found in [8], p. 92-100.

6. The necessary condition for the optimality of the evader’s control.
Now, we prove the theorem providing a necessary condition for the
optimality of the evader’s control in the evasion problem.

THEOREM 6.1. Let T be the optimal moment of meeting of the chaser
and evader. If the attainable set X, of the chaser is compact, convexr, and
depends continuously on t for t € [t,, T] and the set Xy is full-dimensional
in E™, then the optimal control v(t) of the evader is extremal in the interval
fto, T1.

Proof. Let T he the optimal moment of meeting of the chaser and
evader, let «(t) and v(?) be the optimal controls of the chaser and evader,
and let x(t) and y(¢) be their corresponding optimal trajectories, respec-
tively. Denote by X, the attainable set of the chaser at the time ¢. Thus
we have y(t) ¢ 2, for{, <t < T and y(T) € 2; and the relation x(T) = y(T)
holds. Moreover, from Lemma 4.2 it follows that y(T) € 02.

Let us consider in the interval [¢,, T'] the optimal control v(?) of the
evader. Let v be any given regular point of the control »(¢) such that
T<<T. We show that there exists a unit vector e such that

(6.1) Ap [dy(1)]e<0
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for a fixed Ay(r) e K and
(6.2) (#—2(T)e<0

for all x € XZp.

Let {ex}, ¥ = 1,2, ..., be a sequence of positive numbers convergent
to zero. The e-modified control of the control v(¢) corresponding to ¢ = ¢,
and Ay (r) e K will be denoted by v,(t), and the trajectory corresponding
to v,(t) by v,(f). Then the trajectory w,(t) for T<t< T takes the
form (5.1). Let #;, be the moment of meeting corresponding to the controls
v, (t) and u(f). Then we have

(6-3) yk(tk) € Ztk’ k= 1, 2, ces

It follows from the optimality of the pair of controls «(¢) and »(f)
that ¢, < T. Further, we have

k—>00

Indeed, if this were not true, then passing to the subsequence we
would infer that the limit lim ¢, exists and that

k—o00
limt, =i< T.
k-0

As lim ¢, = 0, by (5.1) we obtain

k—>o00

lim y, (%) = y(?).
k->00

However, using (6.3) and Lemma 4.1, we have y(I) € 2;, which
contradicts the definition of 7'. Hence, omitting a finite number of initial
elements of the sequence {t;}, we have

<t <T and limi¢, =1T.
k—o0

Taking now a subsequence of {¢,}, which will be denoted in the same
way, we find that r< t;, < T'fork =1,2,...orv<¢, =Tfork =1,2,...

Let us consider the sequence of points {y(#,)}, ¥ =1,2, ..., lying
on the optimal trajectory of the evader. If #, < T, then y(t,) ¢ 2y, Let
Q, = conv{y(t), 2 }. Then, by convexity of the set Z , y (%) is a bound-
ary point of the set £, . Therefore, there exists a supporting hyperplane
for the set £, at the point y(?,). Let ¢, be a unit vector normal to this
hyperplane and so oriented that

(6.4) (®—y(t) e, <0

for # € 2, , and the more so for # € X, . Since the vectors {¢,} lie on a unit
Sphere, we may choose from them a converging subsequence. Let {e¢,} be
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such a subsequence and let

e =lime,.
k—00

By (6.3) and (6.4) we have (y(t)—y(%))e, <0. Using (5.1) and
passing to the limit, we obtain A, [4y(r)]e < 0 for a given Ay(z) e K.
Further we show that (z—«(T))e<0 for # € 2. Let » be any point
belonging to X,. Then there exists a trajectory z(¢) such that z(T) = x.
However, z(f) € 2, . Hence, taking into account formula (6.4), we have
(Z(t) —y (%)) €, < 0. As k — oo, we infer from the last inequality that
(v —2(T))e = (v —y(T))e<0 forall weXy. If t, =T for k=1, 2, ..., then
Y. (%) € Zp. As y(T) is a boundary point of the set X, there exists a sup-
porting hyperplane for the set 2, at the point y(T'). Let ¢ be a unit vector:
normal to this hyperplane, so oriented that (w —y(T))e L O0forallwel,.
Consequently, as #(T) = y(T), we have (z—=(T))e<0 for all xeZX,.
Hence (y,(t)—«(T))e<0 and, therefore, using (5.1), we obtain
Ag.[4y(r)]e < 0 for dy(v) e K. Thus we have shown that there exists
a unit vector e satisfying (6.1) and (6.2).

Consider a hyperplane passing through the point #(T') and orthogonal
to the vector e. From (6.1) and (6.2) it follows that the set 2, and the
vector —Aq.[4y(7)] lie on the opposite sides of this hyperplane. Hence
the vector —Aj . [4y(r)] does not pass through any inner points of the
set 2. We take any variations 4y(v) at the given r corresponding to all
possible e-modified controls of the optimal control v(f). The vectors.
Ay . [4y(7)] form a convex cone K with vertex at the point #(T). Then
the vectors —Aq.[4y(r)] also form a convex cone with vertex at the
point z(T) which will be denoted by —K{. From the above considerations.
it follows that the convex cone —K$) does not have any common points.
with the interior of the set 2, and since the set 2 is convex and contains.
inner points, there exists a hyperplane separating these sets. Let e, be
a unit vector normal to this hyperplane, oriented into the half-space
containing the set —K{. Thus the set K lies in one of the half-spaces.
determined by this hyperplane and

(6.5) dy-e, <0

for every Ay e KP.
Let now {7}, k =1,2,..., be any sequence of regular points of
the control v(f) such that

7., <T and limr7, =T.

k—oo

Further, let e, denote such a unit vector corresponding to 7, for
which (6.5) holds. We may assume, passing to the subsequence,,
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that

: &
lim 6, =¢€-.

k—oc0
Let Ay € o 'p. By the definition of ", there exists a v<< T such
that Ay e K. Further
lim Tk - T,
k—o00
whence 7, > 7 for k sufficiently large. Thus Ay € K{# because K = K0,

By (6.5) we have Ay-e,kg(). Consequently, passing to the limit, we
obtain

(6.6) Ay-e* < 0.
Relation (6.6) holds for any A4y € A . From (6.6), taking into account

Lemma 5.1, we obtain Theorem 6.1.

Remark. As we have observed previously the optimal control u(f)
of the chaser is extremal in the interval [{,, T'], e.g. there exists a nonzero
solution (#) = (p4(?), ..., ¥,(?)) of the differential equation system

dy; 0H (y,t, (1), u(t) .
_%_z_ (v, ’8.17" ! ), i=1..,n,
n
where H(y,t, 2, %) = 3 v.f*(¢, x, u), such that the relation
k=1
max E(‘P(t)y t, w(t), 'u’) = ﬂ('l’(t)7 t, ®(1), u’(t))

uey

is valid almost everywhere in the interval [t,, T']. It follows by the proof
of Theorem 6.1 that one can put (T) = x(T).
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B. FLORKIEWICZ (Wroclaw)

0 WARUNKU KONIECZNYM OPTYMALNOSCI STERO WANIA
W PROBLEMIE UNIKANIA SPOTKANIA W GRACH ROZNICZKOWYCH

STRESZCZENIE

W pracy przedstawiony jest dowdéd ekstremalnosci sterowania optymalnego
dla unikajacego spotkania przy zaloZeniu, ze zbiér osiagalnosci écigajacego jest zwarty,
wypukly i pelnowymiarowy oraz zalezy w sposéb ciagly od czasu. Warunek ekstre-
malnoéci jest sformulowany w postaci zasady maksimum. Przy dowodzie wykorzy-
stuje sie konstrukcje wariacji sterowan podanag w [8].



