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EXISTENCE OF TIME AVERAGES
FROM THE TOPOLOGICAL POINT OF VIEW

Abstract. The Birkhoff Ergodic Theorem states that time averages exist on a large set in
the sense of measure. This paper gives a negative result as concerns this problem in the sense of
topology even if we weaken our question in a natural way and demand the existence of time
averages on large sets only for a large set of dynamical systems.

Let T be a homeomorphism of a topological space X and let f be a real
Continuous function on X. We may interpret X as a phase space of a
Physical, chemical or biological process, | T"x} as a time evolution of a state
X and {f(T"(x))! as a measurement. The problem of existence of the time
average of f

N-1
im N°'Y f(T"(x),
N—-+ o n=0

1S an important question from the point of view of applications. The object
of the paper is to study topological aspects of this problem.
~ Measure-theoretical aspects of this problem are considered in the Ergo-
dic Theorem of Birkhoff [4]. Birkhoff proved that for a measure preserving
ransformation T of a probability space <X, u> and feL'(X, y) the time
average of f exists for u-almost every point x. The support of 4 may be quite
Small, and hence the subset of X on which BirkhofPs Theorem guarantees
the existence of averages may be small from the topological point of view.
A great progress in this direction is the theorem of Bowen and Ruelle
[lj_l, which implies the existence of the time average of continuous f for initial
Points from a basin of Axiom A attractor except a set of Lebesgue measure 0.
Studying topological aspects of the existence of time averages we can
ask. whether for fixed T and continuous f the time average of f exists on a
residual subset of the phase space. To find examples indicating a negative
answer both for discrete and for continuous time is not difficult.

ExampLe 1. Let X, = {0, 1)Z denote the space of ail doubly infinite
S¢quences of (0’s and 1's with the product topology. Let o be the left shift on
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X, given by 6 ({x,}} = {x;}, xj, = x,+,, and let f be a function on X, defined by
f({xn}) = xo. We define the subset 4 — X, as follows: x = {x,} €4 iff there
exists an infinite sequence of natural numbers {n], n;,; > n; such that

n,- -1

n 'Y x;<1/4 for even i
j=0

and

Yll_l

n! Y x;>3/4 for odd i.
i=0

J

It is obvious that the time averages do not exist for the points from 4. To
show that A is residual we prove that A° is of first category. Define the sets

. i1
BY = {ix,}: for every j> N, j! Y x> 1/4},

i1
BY = {ix,): for every j> N, j~* Y X< 3/4}-
i=0

It is easy to see that BY and Bj are closed and nowhere dense. As
A=) {ByUBY): NeN),

A is a residual set. :

Every element of ¥, describes the process of tossing a coin. Of course,
considering probabilistic aspects of this process the time average of f exists
for almost all xeX, but it does not exist on the residual subset of X, as we
have shown above. .

It is an interesting philosophical question why Nature considers large sets
or probable events in the sense of measure.

The second example was suggested to us by F. Takens.

ExampLE 2. Let us consider a flow {¢,} on R? whose phase portrait is in
Fig. 1. The flow {¢,} has an attracting set y made of two singular points p,

X

Fig. 1
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and p, and of two trajectories y, and y, going from p, to p, and from p, to
Py, respectively. Let f be a continuous function on R? such that f(p;) = 0 and
f‘ (p2) = 1. Roughly speaking, the trajectory of any point p is such that its w-
limit get w(p) = y spends larger and larger time intervals in small neighbour-
hoods of p, and p,. Hence the function

S(N) =T [ £ (o (0)ds

Oscillates and lim S(T) does not exist.
T+ o

Example 2 is in some sense stronger than Example 1, because in
E;(anzlple 2 the time average of f does not exist on an open dense subset
of R¢
~ These two examples make us weaken the question of the existence of
lime averages in a topological sense. We formulate it for discrete dynamical
Systems.

~ Let X be a compact metric space, let E be a subset of Hom(X) equipped
With a suitable topology, and let C°(X, R) be the space of continuous maps
from x to R with the topology of uniform convergence. The problem is
Whether there exist generic sets D — E and § < C°(X, R) such that for each

l::GD and each f €8 there exists a generic subset X(T, f) of X such that the
mit

N-1
lim N~1' Y f(TV(x)
N—-=+ i=0
eXists for each x e X (T, f).
For Morse-Smale diffeomorphisms or flows the time average exists for
all initial conditions, and this follows from the fact that each trajectory tends
asymptotically to a periodic orbit [2]. Hence our hypothesis is true for E

= Diff(S') and E = Flow!(M), where M is a two-dimensional compact
Manifold.

Using the idea of Example 1 we construct a simple example indicating a
nega.tiVe answer -to our question in the case where X is a compact smooth
Manifold, dim X > 3, and E = Diff"(X), 1 <r. The example which we are

going to present is based on Smale’s solenoid ([2], [3]), so we remind its
Construction.

ExampLE 3. Let us consider the embedding
T: S' xD? »8' xD?,
S'={zeC: |zl =1}, D?*={weC: |w <1},
defined by

T(z,w) = (22, z/2+w/4).
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It may be shown that T can be extended to a diffeomorphism of R3. If we
treat S! xD? as the solid torus in R, then

T(S' x D?) < Int(S* x D?),

(22| xD2

T({z] x DY)

-

- T( -z} x0?)

o —-———-—

il U _—— -

and T wraps S! xD? around itself twice as shown in Fig. 2. The torus
T(S* xD?* n {z?) xD? consists of two disks:

T(iz} xD¥) U T({—z) xD?.
The set
A= () T"(S' xD?)

neN

is a hyperbolic attractor [3] and the stable manifold W*(x)
= {zeR* lim d(T"(x), T"(z)) = 0} (by d we denote the distance in R?) of

n—++ o

every point
x = (exp 2nip, w)eA

contains the disk {exp2mip} x D2

For our purposes it is important that the mapping T is structurally
stable [3]. This means that for every T from some C!-neighbourhood of T
there exists a homeomorphism 4 which conjugates T and T on some
neighbourhood of A. '

Let us define the subset A of A as

A = |x = (exp 2nip, w): @ # k/2" for all k, neN)
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and a mapping hy: 4 — !0, 1! by

. 0 if0<eo <1/2,
ho (exp 2rie, w) = {1 if 1/2 j o </1

Applying h, to any T"(x) for xeA we define the map h: A —Z,. It is easy
to see that the image of h contains all £, unless the sequences {x,} such that
X, =0 for sufficiently large n or x, =1 for sufficiently large n. Hence X,
=h(A) is a residual subset of %,.

The mapping h conjugates T| A to the left shift on £,, ie, hoT =c0h.
This conjugacy will be used to construct the residual set in a neighbourhood
of A on which the time averages do not exist for f from an open subset of
C°(R3, R).

For xeX, we call a segment {x;}, i =k, ..., k+1, the j-segment (j=0
or 1) of x of length I+1 if

Xg=Xgs1=. =X =J aAnd X4y FJ,  X-y #J.

Let xex » and let k, n (k < n) be natural numbers. We denote by C;(x, n) the
humber of all /s in the segment {x;!, i=0,...,n and by Ct(x, n) the
Dumber of 0s included in all 0-segments of length >k of {x;},i=0,...,n,
Plus the number of 1's included in all 1-segments of length > k.

We say that xef, satisfies the condition P%(x, n) (P%(x, n)) if

Colx, )= C*(x, n) > 2/3(n+1) (Cy(x, n)—C*(x, n) > 2/3(n+1)).

For k > 3 we define the sets
A(k) = {xeZX,: there exists an increasing infinite sequence {n;} of natu-
ral numbers (depending on x) such that for even i’s P§(x, n;) holds and for
odd /s P%(x, n;) holds!}.
- The sets A (k) are residual in X,. To prove this it is enough to show that
Z;\A(k) is of first category. In fact, let us put

B;(N) = {xeZ,: for each n> N, C;(x, m—C*(x, n) < 2/3(n+1)],
1=0, 1. We can write
£,\A(k) = U {Bo(N)U B, (N): NeN}.

It is easy to see that B;(N) are closed, nowhere dense subsets of Z 2-
Using the map h we can identify the set A4 (k) with some residual subset
of A. We denote the latter also by A and define the set

E(k) =) {W*(x): xeA(k)}.

'I.'he theorem about a stable and unstable manifold ([2], [3]) implies that
E(k) is residual in a neighbourhood of A.
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Assuming that ! is a natural number, we define the sets
Ao(l) = {(exp2mip, w)eS' xD?, 27 < p <271 =271},
A (1) = {(exp 2nip, w)eS! xD2, 27 +2 ' < p < 1—271
(see Fig. 3). Let f: S xD?* —[0,1] be a 'contmuous function such that
fl4e(1)=0 and f]A,(l)=1.

f=Q

Al

Fig. 3

We suppose that / > 2k and show that

N 1

lim N~ Z g(T (%)

N—-+w i=

does not exist for x€E(k) and for an arbitrary function g from some small
C?-neighbourhood U of f. In fact, it is easy to show that this limit does not
exist for any xeA(k).

For xeA(k) and even i we have

(n+1)~ lzg(Tf(x) e+(m+1)" 1Zf(T~'(x))

=0
Se+(m+1)"'card {n: 0 < n<m, T'(x)eS' x D2\ Ay (1)}
Set(m+ )7 [(m+1)— Colx, m)+C*(x, m)] < 1/3+e.
Analogously, for odd 7’s we obtain

n
m+1)7' Y g(T (%) > 2/3—e.

i=0
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Hence for ¢ small enough and g, jlg—f llco <& and x€E (k), the time averages
do not exist. In this way, for the mapping T we have an open set
Ur = C°(R3, R) such that for g €U, the average does not exist on a residual
Subset of §' x D2. Let R denote a small C'-perturbation of T. The structural
Stability of T implies that there exists a conjugacy h, hoR = Toh, h being a
homeomorphism from a small C°-neighbourhood of identity {2]. If the time
average does not exist for 7, g and x, neither it exists for R, goh, h™!(x).
Thus we can get the sets

Ex=h"'(Ek) and Ugx=1§: j=goh,geU;

Such that the time average does not exist for x €Eg, R and g eUy. If the C'-
Perturbation R of T is sufficiently small, then Uy contains an open neigh-
bourhood W of f- Hence for R from a small neighbourhood of T and geW
a l.'esidual set Ag exists such that for R, g, x e A, the time average does not
exist.

It was noted by R. Mané that the crucial point in our example is that
t!'le unstable manifold of a periodic orbit is dense in the attractor and that
Similar examples can be constructed using an arbitrary hyperbolic attractor.

An analogous result for flows can be obtained by using the suspension
Construction for T. We shall briefly describe that construction. Let T be a
diffeomorphism of a manifold M. Denote by M = M x[0, 1] and M the
Manifolds obtained by identification of the points (x, 0) and (T(x), 1),
Iespectively. This identification transforms the vector field 0/t tangent to {x}
X|;0, 1] to a smooth vector field X for which My = M x !0} and T are the

Olncar¢ section and the Poincaré map, respectively. Let T and f be the
Same as in Example 3, X be the vector field obtained by the suspension of T,
and |{§,} the flow generated by X. Define the function

F: M x[0, 1—¢] -0, 1]

by F(x, 1) = f(x) and continuously extend F to F defined on the whole M.
The vector field X is structurally stable, and so for each small C!-
Perturbation X of X there exist a homeomorphism s which maps trajectories
of {3} onto trajectories of {@,}, where {@,} is a flow generated by X.
The nonexistence of the limit |

T

lim T~ [ f(¢(h(x))dt

T—~4+

Implies the nonexistence of the limit
T

lim T7! j'f(h (@,(x)))dt.
T+ 0
This follows from the observation that the term || X (h(x))”—”)f’ (x)|| is small,

Z’(“f (Sc;)the speed of the trajectory @,(h(x)) is almost the same as that of
?,(x)). '
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Thus we have shown that there are an open set V of flows and an open
set of continuous functions U such that for {¢,} €V and geU the time
average does not exist on a residual subset of an open set.

In the last phrases we make several remarks about C°-perturbations. To
be concrete, let us consider C°-perturbations of the solenoid T It is easy to
show that there are an open C°%-neighbourhood U of T and sets 4, B dense
in U such that for Se€A4 and for every continuous function the time average
exists on an open dense subset of some neighbourhood of A, while for S B
and every f from an open subset of continuous functions the time average
does not exist for points from an open dense subset of some neighbourhood
of A.

In fact, we can perturb T near a fixed point (0, 0) in such a way that the
fixed point is an attractor. The stable manifold of the fixed point is dense,
and so the domain of attraction of the fixed point of the perturbed systein is
an open dense subset of a neighbourhood of A The set A is included among
the perturbations of this type.

To construct B it is enough to observe that a small C%perturbation of
T can create in the vicinity of the fixed point the attractor which was
described in Example 2.
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