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ON THE LINEAR COMBINATIONS OF SPACINGS
AND THE RESTRICTED RANGE IN THE EXPONENTIAL POPULATIONS

We consider % independent exponential populations. From each
population a sample is taken which is censored both above and below.
The restricted range is defined as the difference between the largest
and the smallest available observations in the censored sample. The
Spacing is taken as the usual difference between two consecutive order
statistics. The distribution of the sum of ¥ linear combinations of spacings
(LCOS) in k populations and, in particular, the distribution of the sum
of k restricted ranges, is obtained. The variance of this sum of LCOS
is minimized. Finally, the distribution of the ratios of % linear combina-
tions to a specific linear combination is also obtained. For k = 2, the
Probability integral is evaluated.

1. INTRODUCTION

In this paper, two concepts, restricted range and spacings, are dis-
cussed in relation to the exponential distribution. The reason for the dis-
cussion as related to the exponential model is that the order statistics
in the samples from this population are extensively utilized in life tests.
One such case is in the problem of prediction. Lawless [5] uses the order
Statistics in the case of exponential distribution to predict future order
statistics. Lingappaiah [6], [7] utilizes order statistics for the same pur-
bose of prediction in exponential and gamma populations. Kaminsky [3]
gives rigorous bounds for the results of Lawless [5] and Lingappaiah [6].
A Bayesian approach to prediction of order statistics is used in [2] and [8].
Now, suppose a sample of size n is drawn from a population, where this
sample is censored both above and below by s and r, respectively. Then
the restricted range R is defined as the difference between the largest
and the smallest available observations in this censored sample. That
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i8, B = @(_g) —Bpy1) = Up_g— %, , Where ;) denotes the ¢-th order statistics
in this sample of size n. Obviously, if there is no censoring, this reduces
to the usual range in the sample, i.e., %, —u,. Next consider the spacings
V; = U;—U;_; = Xz —T;—y. 1n this paper, these ideas of R and v; are
dealt with in relation to k independent exponential populations. First,
a linear combination of spacings (LCOS) is considered for a population
and then the distribution of the sum of ¥ LCOS from % populations is
obtained. Then the variance of this sum is minimized subject to certain
conditions. For k¥ = 2, the probability integral is obtained for the case
of 6, = 0,. Then the probability is evaluated for the case of 6, # 0,.
Finally, ratios of these LCOS are taken up and the distribution of % linear
combinations to a specific linear combination is obtained.

\ 2. MAIN RESULTS

2.1. Distribution of the linear combinations. Let the sample of size n
be drawn from the population

(1) f(@) = bexp(—bz), @>0, 6> 0.

Let this sample be censored above by s and below by r. Define the
restricted range as

R = n—8 — Ury1 = L(n—g) ~F(r41)°

Then from the joint density of #

n—s and %, , we obtain the dis-
tribution of the restricted range

m!

@) S®) = D) (~17 (bexp(—RbO)] o

where a =n—r—s8—2, b =s+j+1, m = n—r—1. Expression (2) can
also be written as

(3) f(R) =

m: L _R(s+1)6(1 _ ,—6R\a
Tal O~ HETIV(1L — e )%,
Now by (3) we have the characteristic function of B in the form

m! I'(s4+1—1it/6)
s! I(a+s+2—it)) "

(4) Pr(t) =
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Now, consider the linear combination of the spacings v;, where
v, =u;,—u,_, with ¢ =1,2,...,n and %, = 0. Put

n—s
(5) g = Z ai'vi, a,;> 0.

t=r+2

It is easy to see that 2 is R if all a;’s are equal to 1. It is well known
from [1] that these spacings in the exponential case are independent and
v, has also the exponential distribution

(6) f(®) = 6(n—r+1)exp(—(n—r+1)6v,).

By (5) and (6) we have the characteristic function of 2z in the form

n—s

" w0 =[ [T (-] -

j=r+2

If all a;’s are equal, then (7) reduces to (4) as it should be, since
in this case z reduces to R as mentioned above.
Now, inverting (7), we have the distribution of z as

() = m! Z (—1)"[Bexp(—ze(m —k)/C(B)][1/C( k)]

“ mm —k)C(4)/C () —(m —3)]

j=
Jaék

(8) f

where C(j) = a,,;,5, C(k) = @,,4,,, and O(j) and C(k) are such that no
terms in the denominator are zero. In (8), the product term for each k
represents the residue at each of a-+1 poles.

2.2. Distribution of the sum of LCOS. Now consider % independent
exponential populations

f(#) = 0;exp(—6;2), *>0,6,>0,i=1,2,...,k.

Let the sample of size n; be drawn from the ¢-th population and let
this sample be censored above by s; and below by #,. Then put

W =2+2+...+2. '

Then from (6) again we have the characteristic of w in the form

© [U ;2 [;[ ( —a'+1) )]— ’

where 4 is as in ¢(t) = E(iz).
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Inverting (9), we have the distribution of w as

k '
a0 few) =[] [Tv <—1)ai(—1>k"l]x
k a; y
—0;w (m; —k;
k %
0. \a+! C(j; -
T (2) [eoa [] (m—r0-g8 —m—io) |
i o
k as
C (5, A S
* LU ﬂ ((m""k") Oy — "W 9_)] '
t#1

In (10) the quantities under the sums represent the residues at each
of a+k poles, where a = a,+a,+...+a;, with

a; =n,—r;,—8;—2, m; =n—7r;—1
and
0@j) = By gy 429 Cjs) = Qritji+29 C(k;) = Ao keptae

For example, if n, =5, r, =8 =1 (m;, =3, a; =1) and n, = 1T,
r, =1, 8, =3 (my = b, a, = 1), then we deal with (a; = 1 in 2) u, —u,
in both the samples 1 and 2, and now (10) takes the form

(1)  f(w) = —(5Y) %

% [(E)z([el exp(—30,w)][(8 —56,/6,)(3 —46,/6,)]™
0,/ \[ —6,exp(—26,w)]1[(2 —56,/6,)(2 —46,/6,)]"

4 01)2 [6,exp( —506,w)][(5 —26,/6,)(5 —36,/6,)]" ]
(6_2 ([—ezexp(—402w)1[(4—261/62>(4—301/62)]-1) '

+

2.3. Restricted range. Obviously, if all C(j) and C(%) in (10) are equal
to 1, then we have the distribution of the sum of k restricted ranges
R, = Up, s, — U, g1 (0 =1,2,..., k) as

k

!
J(R,) = ”[af’.’:;.! (_1)a,~(_1)k-1] 5

i=1

k a;
X Z 2[(2:)( —1)ki][6iexp(——6iRo(mi_ki))] X
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<L [T oo 2]

ji=1 =]'. ]"=0
J#t i1

where R, = R,+R,+...+R,.
Now, for the same example used for (11) we get the integral

jof(wr 0, = 0)dw = B

as
—20e3"£10e2” — 46~ +156 4= B

which for w, = 3 gives the value g = .0223.
Table I gives P(w > w,, 6, # 0,) by using (11).

TABLE I
0,/6, ‘ 0.5 1 3 5 7 9
P(w > w,) .0118 .0223 .2046 .5378 .6008 .9202

2.4. Illustrative example. The two samples in Table IT are simulated
from the life tests following the exponential model given by (1) with
average life of 1/0, = 2000 hours and 1/6, = 1000 hours, respectively.

TABLE II TABLE III -~
Sample 1 Sample 2 we P(w > w,)
(ny = 5) (ng = 17)

500 97341

221.41 1510.54 1000 .83484
506.38 5430.71 1500 .63607
552.29 3297.11 2000 .44939
1095.22 2261.35 2500 .30291
942.25 1929.30 3000 .19815
341.34 4000 .08025

1009.31 5000 03116

Using (11) with the above values of 6, and 0, we get
(12) P(w>w,) = —(32/7)exp(—3w,[2000) 4 5exp( —w,/1000) —
—(3/7)exp( —w,/200) + exp ( —w,/250) .

Table IIT is generated by using (12).
By Table II, from sample 1 we have 2z, = u,—u; = 389.96 and
from sample 2 we obtain 2z, = 418.76. Hence w = 2,42, = 808.72, and
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using (12) we get
(13) P(w > 808.72) = .90.

In an actual experiment, we can use the enlarged table which can
be generated by using (10) and evaluate the probabilities similar to (13).

3. VARIANCE

Now

n;—8;

(14) w = 2 Z Q0.

=1 ]=r,+2

From (6) and (14) we have
= Zzaijl(ni_j"l'l)eﬂ
i 37
(15) Var(w) = >’ Ya/(n; —j+1)*6}.
]
Now, we can minimize Var(w) by setting
D aylm—j+1) =1.
i
That is, we minimize
D akn—j 1P =4 Y ayln—j+1) (i =1,2,..., k),
i i
where A; is the Lagrange multiplier. Then we have
A = 2[(n; —r;—s;—1) (t1=1,2,...,k),
(16) a; = (m;—j+1)/(n; —r; —s;—1).
Finally, from (15) and (16) we obtain

(17) min Var (w 2 1/(m; —r; —s;—1) 6%,

Now, if all 7, = s; are equal to 0, then (14) together with (16) reduces to

2 2 — 1) (24 —Zyi) [(n; —1).

i=1 ¢{=
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Also we have

k A
(18) wo = D, [ni/(n;—1)16;,

where

ng
= 2 ("'v(t)i —“7(1)1') In;
i=2

is the sufficient estimate of 6, in (1/6;)exp(—(#—a;)/0;) as given by
Sukhathme [9]. It is also known that 2n(6,/6,) has y*-distribution with
2(n;—1) degrees of freedom. Then we have

Var(6;) = (n,—1) 6} n}
and from (18) we get

k
Var(w,) = Z 1/(n;—1) 63,

i=1

which concurs with (17) for r, =8, =0 (¢ =1,2, ..., k).

4. DISTRIBUTION OF RATIOS OF LCOS

THEOREM. Hach of the independent random variables z,, ...,%,,, has
the density function (8) if and only if the random wvariables y; = z/z,,,
1=1,2,...,1, have the distribution

1+1
(—1)%I (141 . 6,)T
9 f,u = [ [ E 2 U0 DT
i 1@ e (1+ 2 )l+1
where E; = m;![s;!, O; = C(k;), and

[1@) = n[«waz m;—j:)l;

v; = (0;@,9;/6,..101,,), T = 6l+1/(01+1dl+1)l+1
d; = (m;—k;)[0;.

Proof. Necessity. From (8) we have
+1

(—1)% —0,d;z;
@) ey =] [ B Z Oexﬁ T
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Make the transformations

(21) Yi = %% Vi = Fge

Then we have the Jacobian v} +1 of the transformation |J|. Now
using (21) and |J| in (20) and integrating out ¥y,,,, we get (19).

Sufficiency. Let ¢(t,, ..., 1) denote the characteristic function of
logy,, ..., logy,. Also, let ¢;(t;,) be the characteristic function of logz;,
t=1,2,...,1+1. Now, we use the result of Kotlarski [4] to prove this
part of the theorem, according to which the characteristic function of
the random variables logy,, ...,logy, determines the characteristic
function of logzy, ..., logz,,, provided the z’s are positive. From (19)
we have

(22)

Pty eeey b)) = ﬁE 2(—1)" (0z+1dz+1 )ui T+ ) I'(l—ligl K
(t1y eoes by 6,4, [[1(Q]d:C; T(A+it,,)
i

where 1 is as in @(f) = E(e**).
Now, it is clear from the definition of the y,s that

1
Pty eees b)) = @1 () - ¢l(tl)¢l+1(_ Zti)°

i=1

By (8) we get

(—1)%I(1 4 At)
(23) = F, 2 C, ”—1 )] 0% qi+

and
o141 —1)“l+1P(1 th)
0 S 3
Pry1— < 1 +1 - Cl+1 el Ast; ll+{'lztz ” Ql+1
l+1 ]l+1

It is easy to observe that the product of (23) and (24) is equal exactly
to (22) and the sufficiency follows. It is also trivial to see that from (22)
we obtain ‘

1+1

(25) 9(0, ..., 0) = H[EiZ(—1)ai([n(Qi)]diG,‘)_1]
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which, of course, is equal to 1. For example, if C; = C(j;) =1, then
(25) is

I+1
E, a: 1
1 -1 a( —1 Il i i =1.
L]l a;! ;( 4 (=) 1(701') m; —k;

Incidentally, it is easy to obtain the distribution of y = y, ...+,
1

since ¥y = D' #;/2,,, and we know the distribution of both z = }'z; and

=1

2, from (8) and (10), respectively. Then we can get the distribution of y
directly from (19). However, it seems easier to obtain the result using 2
and 2.
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G. S, LINGAPPAJIAH (Montreal)

LINIOWE KOMBINACJE ROZSTAWIEN
I OGRANICZONY ROZSTEP W POPULACJACH WYKLADNICZYCH

STRESZCZENIE

Rozwazmy % niezaleinych populacji wykladniczych. Z kazdej pobiera sie
probke ucieta zaréwno od goéry, jak i od dolu. Ograniczony rozstep (restricted range)
definiuje sie jako r6znice miedzy najwieksza i najmniejsza zaobserwowana wartoscig
w prébce ucietej. Przez rozstawienie (spacing) rozumie sie, jak zwykle, réznice miedzy
dwiema kolejnymi statystykami porzadkowymi. W pracy podaje sie rozkiad sumy %
liniowych kombinacji rozstawiei w % populacjach. Jako wynik szczegdlny otrzymuje
8i¢ rozklad sumy %k ograniczonych rozstep6w. Otrzymano takze rozklad ilorazéw %
liniowych kombinacji wzgledem ustalonej liniowej kombinacji. Dla k¥ = 2 obliczono
odpowiednie prawdopodobieristwa.



