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AN ALGORITHM FOR THE DISTRIBUTION
OF THE TIME BETWEEN COINCIDENCES
OF TWO INDEPENDENT PH-RENEWAL PROCESSES *

Abstract. 1t is shown that the distribution of the time between consecutive coincident
renewals in two independent discrete PH-renewal processes has itself a discrete distribution of
phase type. The efficient computation of that distribution and of its geometric asymptote are
discussed. As side results, some arithmetic properties of discrete renewal processes are obtained.

1. Introduction. Consider two independent, discrete renewal processes

with underlying lifetime densities {p,(1)} and {p,(2)}. How often do renewals
in both processes coincide? That question was recently examined by Kopo-
cinska and Kopocifiski [2]. An exponential asymptotic result is presented
in [3]. .
- The point process of the successive times of coincidences is itself a
renewal process. It suffices therefore to study the probability density {r,} of
the random variable ¥, the common value of the first partial sums Sy ,(1) and
Sy, (2) which agree. It is understood that S4(1) =S¢(2) =0, so that both
renewal processes start from a renewal at time n = 0.

The density {r,} is a complicated functional of the densities {p,(1)} and
{p,(2)}. Explicit expressions for the probabilities r, are available only for a
few special cases and the construction of an efficient algorithm to compute
these quantities is therefore a nice problem in algorithmic probability.

The following are brief restatements of properties of Y established
in [2]: |

a. The random variable Y is finite a.s.
b. If the densities {p,(1)} and {p,(2)} have finite means y, (1) and y, (2),

respectively, then ~
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(1) E(Y) = pu (D) (2),

and in the contrary case, E(Y) is infinite.

c. Without loss of generality, we may assume that p,(1) = py(2) =

d. If one of the densities, say {p,(2)}, is geometric, ie., p,(2) =p5 ' 4,
for v > 1, with g, = 1—p,, then {r,} is the geometric mixture

Y e [P )]
k=1

of the successive convolutions of {p,(1)}. The computation and other applica-
tions of such geometric mixtures are discussed in [5].

For general densities, Y may be viewed as the time until absorption in a
Markov chain with a bivariate state space. That state space is generally
infinite, and thus. requires truncation in numerical computations. When both
densities {p,(1)} and {p,(2)} have finite support, they are of phase type and,
as we shall show, so_is {ra}. In fact, for any two PH-densities, not necessarily
of finite support, the density {r,} is of phase type. As, in particular cases, the
representation of {r,} may involve large matrices, it is necessary to exploit its
structure and its asymptotic properties in the computation of {r,}. This paper
is devoted primarily to these aspects of practical computation.

Let us briefly discuss the periodicity of the density {r,}. If the density
{p,(i)} concentrates on the integers a(i)+kd(i), k >0, for i =1, 2, the sup-
port of the density {r,) is given by the Chinese Remainder Theorem, which
¢haracterizes the common elements of the congruences {a(l)+kd(1)} and
{a(2Q)+kd(2)}. In particular, if both densities {p,(1)} and {p,(2)} are periodic
wish periods d(1) and d(2), we may first reduce d(1) and d(2) by redefining
the densities so that d(1) and d(2) are relatively prime. The period d of the
density {r,} is then the least common multiple of d(1) and d(2).

2. The case of PH-densities. Saying that {p,(1)} and {p,(2)} are PH-
densities means that they may be considered as the absorption time densities
in (m;+1)- and (m,+ l)-state Markov chains with transition probability

matrices
SG@ S°()
0 1

with initial probability vectors [B(i), 0], i =1, 2. For a detailed discussion of
PH-densities, see Chapter 2 of [4].

Any probability density {p,, ..., px} on the integers {1, ..., K} is a PH-
denSIty It is readily verified that {pl, ..., Pk} is the absorptlon time density
from the state 0 in the (K + 1)-state Markov chain with transition probability
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matrix (illustrated here for K = 7)

0py 0 0 0 0 0 g

0 0 p 0 0 O 0 45

00 0.py 0 0 O g

0O 0 0 0 p 0 0 gy

0 0 0 0 0 p5 0 g5/

0 0 0 0 0 O ps g5

O 0 6 0 0 0 O0 1

000000 0 1
Where the quantities p and ¢} (1 <i < K—1) are defined by

K K
/ -1 ! !
= [ Z Pj] [ZP;] and gq;=1-pj.
J=t

j=i+1
Note that by replacing the last two elements 0 and 1 in the K-th row of

that_matrix by 6 and 8 =1-60 with 0<60 <1, we may represent the
modified geometric density

pP=p (1<i<K), p’=px(1—6)8X (i=K).

Thls_i§ useful in reducing the truncation error in computations for general
densities which are not of phase type and have unbounded support. We may
truncate_ at a sufficiently high index K and put the remaining mass in a
geometric tail of which the parameter 6 is chosen so that the correct mean of
the given density is matched.

The stochastic matrix S*(i) = S()+S°()B(0), i=1, 2, describes the
Markov chain obtained by restarting the absorbing Markov chain immedi-
ately upon absorption, by choosing the new initial state according to indepen-
dent multinomial trials with probabilities given by the components of the
V?)Ct_or B(). The restarting matrices S°(i)B(i), i = 1, 2, give the probabilities
57 (D B (i) that the absorbing Markov chain reaches the absorbing state from
the State j and is instantaneously restarted in the new initial state k
(1 <j, k < my). As discussed in [4], we may assume without loss of generality

that th'e matrices S*(i) are irreducible. The invariant probability vector 7 (i)
of §*(i) is given by

2 7(i) = 1 Bli n1—1
=—PB@)[I-S( , i=1,2.
1) )
, W? now consider an absorbing Markov chain with m; m, transient
States (i, i), 1 <iy <my, 1<, < my, listed in the lexicographic order, and
One absorbing state. Its initial transition probability vector is given by
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[B(1)®B(2), 0] and its transition probability matrix by

L I°
(3 [0 1 ]

where

@) L=S(1)®@S(2)+S°()B(1HDS()+S(1)®S°(2B(2)
and

&) L° = S°(1)®S°(2).

The symbol ® denotes the Kronecker product of matrices.
Setting y = B(1)®B(2), we see that

(6) L* = L+ L%y = $* () ®5*(2),

and since both S*(1) and S*(2) are irreducible, so is I*. The invariant
probability vector of the stochastic matrix L is given by n(1)®@m=(2).

Tueorem 1. The probability density r, of the random variable Y is the
PH-density with representation (y, L).

Proof. The Markov chain with the transition probability matrix L in
(3) is constructed from the defining chains of the two PH-densities. If
transitions between non-absorbing states occur in both chains, we have the
transitions corresponding to the Kronecker product S(1)®S(2). Transitions
in which absorption and restart occur in exactly one of the Markov chains
correspond to the terms S(1)®S°(2)B(2) and S$°(1) f(1)®S(2). Finally, co-
incident absorptions correspond to the column vector of probabilities
SRS D). | , |

Formally, the computation of {r,} is now straightforward. For easier
interpretation of numerical results, we actually compute the quantities

(7 P[Y>n]l=yL'e=1~ Y r,

v=0
for n>0. These quantities are evaluated by recursively computing the
vectors yL’, followed by summation of their components. There is an easily
implemented stopping criterion, since

E(Y)= T PLY >l =i () @.

We stop as soon as the accumulated sum of the quantities P[Y > n] is
sufficiently close to the known value of E(Y). The numerical value of the
sum is reported as the computed mean.

In practice, the simplicity of the recursive scheme is somewhat deceptive,
and this for several reasons:
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a. The matrix L is commonly of high order. In the interest of computa-
tional efficiency, its special structure needs to be exploited.

b. The quantities P[Y > n] often decrease to zero very slowly. A crude
implementation of the recursive scheme may result, after significant computa-
tional effort, in an uninformative table with several thousands.of entries.

Fortunately, the sequences {P[Y > n]} and {r,} have geometric asymp-
totes, that is :

8) P[Y >n]=Cn"+o(n")
and
®) ra=Cin" +o(n"Y)

a8 n—o0. The constants C and C, are non-negative and 0 <n <1. The
Computation of these asymptotic constants itself requires some effort and
presents challenges to increase its efficiency.

. 3. Exploiting structure in computation. Because of the high dimensions
of the resulting matrices, it is usually not advisible to work directly with
Kronecker products. The following are well-known mathematical properties
of Kronecker products which are very useful in algorithmic implementations.

Let 4 and B be matrices of dimensions ny xn, and nj xn;, respectively.
Their Kronecker product is then of dimensions n, ni xn,n,. Let # and v be
Tow vectors of dimensions n,; n; and n,n), respectively. The matrix U is
Q_btained from the vector u by partitioning that vector into n, vectors of
dimension ny and by writing these as the rows of the (n, xn})-matrix U, The
(n; xn5)-matrix ¥ is similarly obtained from the row vector v.

The product u(A®B) = v is now conveniently evaluated as

(10) ATUB=V.
Mutatis mutandis, if u and v are column vectors of the same dimensions as
before, then (A®B)v = u is evaluated by forming '

AVTBT = U,

and u and v are now the direct sums of the columns of U and V.
In the recursive computation to implement formula (7), we first store

$*(1), so that
L=S*(1)QS(D+S(1)®S°(2) (2.

We first compute u

5* . .
Next we note that - (D ®5()] by use of (10). The result is stored in V.

ST(HUS ()B(2) = zB(2),

Where Z j . |
$ @ column vector of dimension m,. We evaluate the vector Z and
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add the easily computed matrix ZB(2) to V to obtain the vector v = uL. The
vector v is the direct sum of the rows of the matrix ¥, but it is never directly
used as such. We only operate with the matrices U and V and perform
multiplications only on matrices of dimensions at most equal to
max(m,;, m,). Without further use of additional special structure, the evalua-
tion of each term P[Y > n] requires 2m? m3 + 2m? m,+m, m, multiplications.

It is of interest to look in detail at the case of modified geometric
densities, of which densities with finite support are a special case. In order to
show the structure of large matrices, we shall display these for particular but
representative cases. . '

If $(1) is of the form

(0 o, 0 0 0
00 p, 0 0

then L has the block structure

(DS ris*@ O 0 0
Ms@ 0 pps*2 O 0
(S 0 0 piS*@ 0
%1)s@ 0 0 0  PiS*Q
| 0:5(2) 0 0 0 6, 8*(2) |

and the vector y is given by y =[8(2), 0, 0, 0, 0].

Let v be a column vector of dimension m; m,, partitioned into m,
vectors v(1), ..., v(m,) of dimension m,. We may compute Lv efficiently and
store it in the same memory locations as used to store v. To do so, we first
compute x = §S(2)v(1), and then successively for i = }, v,y —1

v() = pi()S*(Qv(i+1)+4i(1)x
and, finally,
v(m,) =0, S*(2v(m,)+0] x.

By reserving the vector $*(2)v(m,), most multiplications for this last equa-
tion may be avoided.

In order to compute the terms of the sequence P[Y > n], it is efficient
in this case to initialize v by e, and then premultiplying v successively by L.
The term of interest is given by B(2)v(1). We see that, merely by exploiting
the special structure of the first density, we have reduced the number of
multiplications per term to (m, —1) my(m,+ 1)+ my (m, + 3).
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When £(2) =(1,0,...,0) and 5(2) has the same structure as S(1), we

see that the modules S(2) w and $*(2) w, which arise in the computation of
Lv, are given by '

p1(2w,

p2(2) w3

SQw=|.........

Pry-1(D W,
02 W,

and
S*(Qw=S2)w+w, $°(2).

For each n, the probability P[Y > n] is now simply the first component of
the current. vector ». Each term requires only 4m; m,—m, multiplications.

4. The geometric asymptote. The asymptotically geometric behavior stat-
ed in formulas (8) and (9) is easily proved when the matrix L is irreducible,
but in some rather special cases L may be reducible. Let us first present the
argument for the irreducible case. '

Let # >0 be the Perron-Frobenius eigenvalue of L, and u and » the
corresponding left and right eigenvectors, normalized so that ue =1 and wy
= L. It is known that this uniquely determines the vectors u and v, which are
both strictly positive. Moreover, as n — oo,

L" = n"vu+o(n").
It now immediately follows that

(1) PLY > n] = 1"yo+o0(1")
and
12) ro = 1" () (uL%) + 0 (1"~ ).
The inner product ul® may be explilcitly evaluated. It is given by
(13) Cul’=1-p.

To see this, we postmultiply by e in the equation uL =zm to obtain
| n =nue=ulLe = ue—ul® = 1—ul®.
Setting v = C, we rewrite (10) as
r=Cl—mn"" +o(n"™".

Tht? vector u, the eigenvalue # and the equality (13) have noteworthy
Probabilistic interpretations. Since
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yL’
yL"e

u may be interpreted as the vector of conditional probabilities of the
transient states in the Markov chain (3), given that absorption takes a “long”
time. From (13) we see that # may be viewed as the conditional probability
that a coincidence will not occur at the next time unit, given that the time
since the last coincidence is long. The equality (13) also serves as an internal
accuracy check in numerical computation.

Assuming for the time being that 5, u and v have been computed, the
asymptotic formula (9) is used as follows. Having computed u(n) = yL", we
evaluate u(n+1) = u(n) L and check whether

(14)

—u as n-o,

, —NU; <
max |u; (n+ 1) — nu; (n)] ——

If that inequality holds for n = N, then it is readily verified that, for all
n>N,

IPLY >n]-Cn" <e.

As an alternative, we may stop when that last inequality holds for K (say,
ten or more) successive values of n. While that criterion does not guarantee
that the inequality holds for all higher n, it requires much less effort to check
and is usually adequate.

As an internal accuracy check on the asymptotic formula, we report the
computed mean of the density {r,} if the asymptotic formula is used from n
= N+1 onward. That quantity is given by

i PLY > n]+Cn"" 1 (1—m)~!
n=0

and should be satisfactorily close to E(Y).

Reducibility of L arises when both PH-densities { p,(1)} and {p,(2)}
require lead-in phases which are visited only once. These arise, for example,
with densities of finite support for which some initial terms p, (i), p, (i), ...
(i =1, 2) are zero. The corresponding matrix S (i) has lead-in phases when its
upper left-hand corner consists of a block of the form

0 00

o
OO O *
OO %

0
*
0 0

ndicate positive elements. The effect of lead-in phases in
$ to cause the matrix L to be (after reiabeling .of the

where the asterisks i
both PH-densities i



Independent PH-renewal processes 9

o o

Where the square matrix D is irreducible and A4 is a square non-negative
matrix of spectral radius zero. If 4 is of order g, then A? (or possibly already
a lower power of A) vanishes, This implies that L9 is of the form

0 E|
0 D
We handled the difficulty of reducibility of L by identifying the lead-in

phases as part of our algorithm to compute 5, which is now also the Perron-

Frobenius eigenvalue of the matrix D. In applying the asymptotic formulas,
we now write, for n> g,

states) to be of the form

yLre = yL? (L" 7 ¢)

and note that yL? is a non-negative vector with zero components corre-
Sponding to the lead-in phases. If we write y* for the vector y with those
Components deleted, we see that, for n>g,

yL'e=y*D""9e=n""%y*v+0(n""")
as n — oo,

- The eigenvalue n and the vectors u and v can be computed by several
lterative procedures. The block structure of the matrix L appears to make
the present case an ideal candidate for the aggregation-disaggregation
method of Schweitzer [6]. In our computations, we implemented Elsner’s

algorithm [17], which is easier to program, as no code for either algorithm
appears to be readily available. |

5. Some arithmetic properties of discrete renewal processes. By choosing

the probability density {p,(1)} to be degenerate at m,, we obtain highly

tractable results on certain arithmetic properties of discrete PH-renewal

processes. In displaying the structure of matrices, we shall use m, = 4.
The matrix L is then given by

e ——

0 -S*2 0 0
0 0 S§*2) 0
0 0 0

S o 0 0

(7]

*
—_—
i

and y =[8(2),0, 0, 0]. In what follows, we may drop the index 2 on the
ﬁ_natrlce:s § and §*, Also, r, may differ from zero only when n is a multiple of
™;. It is therefore sufficient to study the probabilities P[Y > km,] for k > 1.
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It readily follows from the structure of the matrix L that
(15) PLY >km]=B(S*""'Ske, k>0,

so that the random variable Y/m; has the PH-density with representation
B, g*m! §]. The random variable Y is the first partial sum of the sequence
of integer-valued lifetimes which is a multiple of m,.

In a discrete renewal process, the embedded sequence of renewal times,
which are multiples of m,, is itself a renewal process. The mean time between
successive visits to multiples of m, is given by

p(my) =my B[I—S*™ " 577
but by virtue of formula (1), this quantity should also be equal to

my u(1) = my BI—S)"" e

This has the interesting consequence that, in the stationary renewal
process, the fraction u(1)/u(m,) of renewals occurring at multiples of m, is
given by 1/m;,.

The equality

(16) BLI—S*™"'S] 1e=pBU—5) e

may also be established by a simple matrix calculation. We set

w(m,) = [I-8*""" 11

so that
w(my) = e+S*" 7" Sw(m,).
Now premultiplying by the vector
n =~——ﬁ -9,

(1)

which is the left invariant probability vector of the irreducible stochastic-
matrix S* we obtain

aw(m,) = 1+7aSw(m,),

which implies that fw(m;) = u(1) and that is tantamount to (16).

The PH-densities with representations [§, S*™ ™' §] all have mean u(1),
but plots of these densities or of selected quantiles can be used to illustrate
how the renewal times of the PH-renewal process favor or dlsfavor multiples
of various integers m,.

The successive visits of a discrete PH-renewal process to a residue class
tkmy+r}, with 1 <r<m—1, do not form a renewal process. We may,
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however, obtain the probability distribution of the first passage time Y to the
set {km,+r, k > 0}. The analogue of formula (15) is

PLY > kmy+r] = pS* "1 S[S*""*S5]e for k > 0.

This formula, as well as (15), may be obtained by a direct probability
-argument. In order for the event {Y > km, +r} to occur, the Markov chain
with transition probability matrix S* should not have a restart (renewal) at
the time points vm;+r, 0<v<k. At all other times, phase transitions
(described by S) or restarts (described by S°f) may occur.

6. The associated counting random variables. In some applications, we
may also be interested in the numbers N, and N, of renewals which have
occurred in both PH-renewal processes at the time Y of the first coincidence.
These random variables are also briefly considered in [2].

We consider the joint probability density

PV, v2; ) =P[N; =v,, N, =v,;Y=n] forv,>1,v,>1,n>1.

The computation of the trivariate sequence {r(v(, v,; n} is a monumental
task, even for PH-renewal processes. If necessary, it can be carried out
efficiently by the following recursive scheme.

Let us define row vectors K (v1, v2; n) of dimension m,; m,. The compo-
nent of K(v,, v,; n), indexed by (ji,Jj2) (with 1 <j;, <my, 1 <j, <m,, and
these pairs listed in the lexicographic order), is the probability that at time n
no coincidence has yet occurred, that respectively v, and v, renewals have
occurred in the first and second processes, that the first process is in its
Phase j;, and the second in its phase j,. For v, <0 or v, <0, these vectors

are clearly zero. For other values of K (v1, v,; n), they satisfy the recurrence
relations

K@©,0,0 =y 5 B(1)®B(2,
K(vi, v2;m) = K(vy, v55 n=1) [S(1) @S (2]
+K(v1—1, v;; n=1)[S°(1) B®S (2)]
+K(vi; v,—1; n=1)[S(1) ®S°(2) B(2)].
The vector generating function

17

[+ o] [+ ¢] [+ o}
K'GiLzp;m) =3 T Y K@y, vy mzliziwe

n=0 v{=0 v5=0
is, after routine calculations, found to be given by
(18) K*(zy, 225 w) = y [I - wS (1) @S (2) — wz, S°(1) B(HRS ()
—wz, S()®S°(2) B(2)]7 1.
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It is now clear that for v; > 1, v, > 1, n > 1, the probability r(v,, v,; n)
is given by

(19) r(vy, vo;m) = K(vi—1,v,—1; n—=1)[S° (1) ®S5°(2)],
and the generatmg function R(zy, z,; w) = E(z] ' 232 wY) by
(20) R(zy, 225 W) = wzy 2, K*(zy, z,; W) [So(1)®so(2)]_

Formulas (18) and (20) are primarily useful in deriving expressions for
the means and, in principle, the higher moments of N,, N, and Y. For
example, after routine differentiations and manipulations, we obtain

E(N))

= yI L)~ {I-(S°(M B @S )[I-SM@S (2]~} (S° (1) ®S°(2).
For E(N,) we obtain a similar formula with the matrix S°(1)8(1)®S(2)
replaced by S(1)®S5°(2) B(2). It should be stressed that these expressions for
E(N,) and E(N,) are in their simplest analytic forms. Appreciable simplifica-
tions arise only in very special cases. If the density {p,(1)} is geometric, then
by setting S(1) = p; and S°(1) = g, = 1 —p, we obtain expressions for E(N,)
and E(N,) which, after considerable matrix algebra, reduce to

E(Ny) = pi+q,u(2)
and ' '
' 1

1-p BQU~-p, S(]7*5°Q)

Notice that the denominator in this last expression is 1 —P;(py), where P, (z)
is the probability generating function of the density {p,(2)}. For this special
case, the expressions

E(Ny)=p;+q,#(2) and E(N)=[1-P2(p)]"’

are general and are not limited to the case where {p,(2)} is of phase type.

In using the recurrence relation (17), we note that it is essentially similar
to the elementary Pascal triangle except that much more storage is required.
For any n, we need, in principle, store all the m, m,-vectors K(vy, v5n)
with 0 < v; +v, < n, and from these, the vectors for which v, +v, = n+1 can
be computed. For each value of n, we compute and store the corresponding
probabilities r (v, +1, v,+1; n+1) and store the vectors K corresponding to
n+1 in the same memory locations as previously used. Clearly, such a
massive recursive computation should be planned with the greatest care and
negligible vectors K should be adaptively trimmed.

E(Nz) -

7. A numerical example. We wrote a FORTRAN code to implement the
recursive computation of the probabilities P[Y > n] by means of formula (7).
An option of the program allows implementation of the asymptotic formula
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(9). When that option is called, the Perron—Frobenius eigenvalue n and the
eigenvectors u and v are iteratively computed by an (improvable) application
of Elsner’s algorithm. We tested the code on a large number of examples. To
report one such example, we let the densities {p,(1)} and {p,(2)} be negative
binomial with generating function (gz(1~pz)~ )", with common parameter p
=035 and m equal to 5 for the first density and 6 for the second. The means
and standard deviations of these densities are respectively

u(l) =7.6923, a(l) = 2.0352
u(2) =9.2308, o(2) = 2.2294.

The direct recursive scheme halts when 758 terms have been c‘omputed. The
758

computed mean ) P[Y > n] equals 71.005, while the exact mean is 71.006.
. n=0

Evaluated to five decimal places of accuracy the maximal cigenvalue n of
the (30 x 30)-matrix L is equal to 0.98537 and the constant C is found to be
1.0387. If we stop the recursive computation as soon as ten successive terms
are within 5 x 10~ of the values given by the asymptotic formula, only forty
terms are computed exactly. Replacing the complementary distribution by its
geometric asymptote for n > 40 results in a computed mean of 71.003. These
results are fairly typical, but it is of course easy to construct examples for
which the approach to the geometric asymptote is much slower. In such
Cases, the exact recursion usually also evaluates many more terms before the
computed mean is close to the known exact mean.

and
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