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EXPLICIT FORMULAS FOR TRANSITION INTENSITIES
IN THE QUEUEING SYSTEM E,/E,[/n

1. The problem. Consider a queueing system in which (a) interarrival
times are independent random variables each of them having the Erlangian
distribution of order 2 and the expected value 2/4, (b) service times are
independent random variables with the Erlangian distribution of order
2 and the expected value 2/u, and (c) there are » independent service
channels. If an item arrives when all channels are busy it is lost, otherwise
its service begins in any of the free channels.

We will study the stochastic process N (¢), defined as the number
of items being in the system at moment ¢. For the defined system N (¢) is
not a Markov process, however, it is easy to define its appropriate exten-
sion which will be Markovian. We note that the interarrival time (service
time) having the Erlangian distribution of order 2 and the expected value
2/2 (2/u) may be interpreted as consisting of 2 phases, their durations
being mutually independent random variables having identical exponential
distributions with parameter A (u). Decompose the interarrival time into
two consecutive exponential phases: the phase number 2 and the phase
number 1. The same will refer also to the consecutive phases of service times.

Let us define a three-dimensional stochastic process

X(t) = [M(t)7 -Nl(t)y Nz(t)]’

where M (t) is 2 or 1 according to the number of the interarrival phase
at moment ¢, N,(¢) is the number of items which at the moment ¢ undergo
the ¢-th service phase (i = 1, 2), and X (¢) is obviously a Markovian sto-
chastic process and

1) N () = N.(t)+ Ny (2).
The number 8, of possible states of process X (¢) is finite and equals
(2) 8, =2 Y (k+1) = (n+1)(n+2), »n=1,2,...,
k=0
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where the coefficient 2 stands for the two possible states of the coordinate
M () and k41 is the number of possible ways to decompose the number
of k items in the system (¥ = 0,1,...,n) into two non-negative integer
components.

To calculate the probabilities of the states of X (f) the order of the
states is not essential. If some order is chosen, then the transition intensity
matrix

Q ((n))’ 7:7.7-2172’-"7871,7

may be found. The aim of this paper is to introduce a convenient order
of the states so as to obtain as simple as possible explicit formulas for
the elements of matrix @,,.

2. Limiting probabilities of X () and N (¢). The transition intensity
matrix may be used to find the limiting probabilities

p; =MmP(X(t) =i), i=1,2,...,8,.
t—o0

X (t) is a transitive Markov process, so that the limiting probabilities
exist and satisfy the system of equations (see [2], 1; XVII, 9)

(3) Zplq‘") =0, j=1,2,...,8,.

Since the transition intensities fulfill the relation

(4) Zq(")_ 1 =1,2,..., 8,

and we additionally require that

Sp,
(5) D=1,
=1

there always exists a non-zero solution of system (3). The limiting pro-
babilities p; of the process X () enable us to find the limiting probabilities
P, of the process N (t). There is

(6) Pk=}£I£P(N(t)=k) = Ypiy, k=0,1,...,m,

‘iGZk

where Z, is the set of all the integers ¢ which are the numbers of the states
(M,N,,N,) of X(t), such that N,+ N, = k.
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3. Examples of the transition matrices. Now we shall find the matrices
Q, for n = 1,2, 3. In every case the states of the process X () may be
written in the form of a triplet (M, N,, N,). In the case n = 3 the diagram
of all states of the process X (f) and all immediate transitions between
them is shown in Fig. 1. In diagram 1 immediate transitions are denoted
by arrows and the corresponding transition intensities are written along
them.

Transition intensities are easy to find here. For example, to find the
transition intensity from the state (2, 2, 0) to the state (2,1, 1) consider
the time interval [%,, t,+ k] of length k and assume that X (¢) = (2, 2, 0).
The transition from this state to state (2,1, 1) in this interval occurs if
exactly one of the items being in the second phase of service at {, completes
that phase before t,+ h and simultaneously the item being in the second
arrival phase remains in that phase up to t,+ h. The probability of this
1s equal to

2 —uhy\ ,—uh
(1)(1—6 )e = 2uh+o(h).

Other ways of the same transition have probability o(k), hence the

corresponding transition intensity equals

.1
im — (2uh+o(h)) = 2u.
o h

Rejecting the two last rows in the diagram for n = 3 we obtain the
corresponding diagram for the case n = 2 and rejecting the four last
rows — the diagram for » = 1.

To construct a transition matrix @, the states have to be ordered in
some way. We shall number the states shown in diagram 1 by rows so that,
for n = 3, (2,0, 0) will be the state number 1 and (1, 0, 3) will be the
state number 20. The complete transition matrices Q,, @,, @, are given
on p. 190. For better ilustration of their pattern only some zero transitions
have been shown. Asterisks on the main diagonals stand for the negative
elements, their absolute values equal to the sums of the remaining elements
in the corresponding rows.

The partition of matrices ¢, into separate non-zero submatrices
will be used to construct recurrent formulas.

4. Recurrent and explicit formulas. The pattern of matrices @,
Q., Qs sugests the recurrent construction of the next matrices ¢,,. Before
the deduction of recurrent formulas we shall introduce the notation for
non-zero submatrices of @,:
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-2 2
0o —4)’
T —A—np  nu 0 0
0 —A—nu (n—1)u 0
........................ of size (n+1)x (»+1),
0 0 0 u
L o0 0 0 —A—np
200 ...00
B, = 040..00 of size n x (n+1),
000...10
20 ...0
0 2 .
C, = of size (n4-1) X (n+1),
00 ... 2
0 0... 0
u 0 0

D,=102u... 0| of size (n+1)Xmn,

—nu Ny 0 0 0
0 —nu (n—1)u 0 0
..................... of size (n+1) x (n+1).
0 0 0 —nu  u
0 0 0 0 —nu
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M, | z
D, | 4, | ¢
@ = \ D, A, | B, ’
D, 4, | 0,
D, | B,
M, B
D, 4, | ¢
]1)1 4, | B,
D, 4, | Cy |
D, 4, | By | |
| D, ; 4, | €,
D, | &
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The following two theorems provide recurrent and explicit formulas
for matrices Q,.
THEOREM 1. Let M, be the matriz of size (n+1)(n+2) X (n+1)(n42)
defined by the recurremt formula

(10) M,

Then

(11)

Qn=

M. !
n—1 Bn }
! !
| D 4, | C, |
D, 4, .
Mn—l B
n
D,| |4.]|¢C,
| D, E,
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THEOREM 2. The elements ¢ (¢,j =1,2,...,8,) of the mairiz
Q,. are as follows:

(12) @ yimitem =4, m=1,2,...,2 and i =1,2,..., %,

(13) Q$:2|-1)n+m,(n+l)2+m =1 m=12,...,m+1,
(14) qg'z;)—1)+m,i(i—l)+m = —A—(t—1)u,

m=1,2,...,2t and 2 =1,2,... n,
—A—nu, m=1,2,...,n4+1,

15) ¢ =
15) " Gt ymm, s —nu, m=n+2,n+3,...,2(n+1),

(16) qs'z‘)—l)+m,i(i—l)+m+l = (¢—m)pu,
m=1,2,...,¢—1 and ¢ =2,3,...,n+1,
(17) Q'gg-{-m,i2+m+l = (t—m)u,
m=1,2,...,2—1 and t =2,3,...,n+4+1,
(18) qs;g-)-m+1,(i—1)2—m+1 =(t—m)u,
m=1,2,...,t—1and ¢ =2,3,...,n+1,
(19) !lz(a)+1)—m+1,i(i—1)—m+1 = (t—m)u,
m=1,2,...,i—1 and ¢ =2,3,...,n+1,
(20) ¢ = 0 otherwise.

Proof of Theorem 1. We proceed by induction. From (7), (8)
and (9) it is easy to see that formula (11) holds for » =1, 2, 3. Having
assumed that (11) holds for » = k, we prove now that @, ., is of the form

M, , B,
D, 4, | C,
(21) Qi1 = D, A, Bk+1‘
Dy ys Api1| Crpa
Diya Ey s

The transition diagram for the system E,/E,/(k+ 1) may be obtained
from the transition diagram for the system FE,/E,/k adding two rows
of the states and the corresponding immediate transitions. The added
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transitions connect the states of the last four rows of the new diagram. The
last five rows of transition diagram for the system E,/FE,/(k+ 1) are shown
in Fig. 2. In each row there is written the number of the first state in this
TowW.

The transitions between the states not mentioned in Fig. 2 and the
states being in the first and second rows of the diagram in Fig. 2 are
identical for both the systems E,/E,/k and E,/E,/(k+1). This justifies
the presence of submatrices M;_,, By, D,, A; and C, in the two upper
rows of the submatrices on the right-hand side of (21). Transition intensi-
ties between states of the third row and the states of the fourth row of
the diagram form the submatrix B, ,. Transition intensities between
states of the third row form overdiagonal elements of the submatrix 4,
in the third row of the submatrices in (21). Transition intensities between
states of the third row and the states of the first row form submatrix D,
in the third row of the submatrices in (21). Transition intensities between
states of the fourth row and the states of the fifth row form the subma-
trix C,,,. Transition intensities between states of the fourth row form
overdiagonal elements of the submatrix A4,,,. Transition intensities
between the states of the fourth row and the states of the second row form
the submatrix D, , being in the last but one row of the submatrices
in (21). Transition intensities between the states of the fifth row and the
states of the third row form submatrix D, , being in the last row of the
submatrices in (21). Transition intensities between states of the fifth
row form overdiagonal elements of the submatrix F, . Diagonal elements
of submatrices 4, 4, and E,,, are obtained with the help of relation (4).

Proof of Theorem 2. Formulas (12)-(20) in the thesis of theorem 2
follow from theorem 1. Formula (12) for m = ¢ = 1 represents the
overdiagonal elements of the submatrix M, and for other values of m and
¢ the elements of submatrices B, (k =1,2,...,n) and the elements of
submatrices C; (k =1,2,...,n—1). Formula (13) represents the ele-
ments of submatrix C,. Formula (14) represents the diagonal elements
of submatrix M, and the diagonal elements of submatrices 4, (¥ =1, 2,
..., n—1). Formula (15) represents the diagonal elements of submatri-
ces A, and E,. Formulas (16) and (17) represent overdiagonal elements
of submatrices 4, (k =1,2,...,n) and formulas (18) and (19) the ele-
ments of submatrices D, (k =1,2,...,7n) (here it is worth to note that
the indices of the intensities in formulas (17) and (19) are suitable modi-
fications of those in formulas (16) and (18)).

5. Example of the limiting distributions of N (f). Explicit formulas
for elements of the matrix @, may be used to build a simple algorithm
for the construction and numerical solution of the system of equations (3)



M. Jankiewicz

196

Z b4

rl e - () e ) e
1+ 0% A% 21-11 VA 0L+

3 1

% )_,“ i ] !
o1l e N ) (14 —
oz N\ 1 =G O [N, [0l
L) iy ! e f i T

)_m )_w ” )_m rl \_<

T ANIVD ¢ I3 .Q‘I\ 4 ¢ V\ €,

10 -0\ TN 0%

74+y) T F ly ¥ Mt f T I

J_m U )_w l )_m r A_W

nibl va\v P p (=) P : ] Y

10 A AN =rz) N 0%7e

ly f g K 7 T

R I {
: (1) —<7(z-1) el ——
253 PR M / 01—

l«, f 7 g ,0 y N aw

1/ .‘
\ N N N /

L+, (3+1)

b+ (2+1)(+)

L4, (L+)

L+ (L+1)

.



Egxplicit formulas 197

with condition (5) and the calculation of limiting probabilities P, (k = 0, 1,
..., n) for the process N (t). We present here the results of a real appli-
cation of the theory to analyse the work of railway classification yards.
From the analysis of the empirical data in [1] (this problem has been
studied also in [3]) follows that the system E,/E,/n may be applied.
It is assumed here that the expected value of the interarrival times of
trains for a given station is equal to 2/1 = 37.0 (min) and the expected
value of the service time of a single train is 2/u = 195.2 (min). The re-
sults of calculations are presented in Table 1. Obtained distributions
indicate that the number # = 7 of tracks is sufficient to assure the effective
work of the system.

- An ALGOL algorithm for the calculation of the limiting distribu-
tion of the process N (¢) in an E,/H,/n queueing system is going to be
published in the next issue of Applicationes Mathematicae.

TABLE 1
i |
N 1 2 | 3 ¢ | 5 6
0 0.125 0.037 | 0.019 0.013 | o011 | 0011
1 0.875 0.256 | 0.127 0.088 0.073 '  0.068
2 0.707 ’ 0.337 0.228 0.189 | 0.175
3 0.517 0.336 0.275 |  0.253
4 | 0.335 | 0264 | 0.241
5 i 0.187 0.165
6 i ‘ 0.087
4 |
% kPy 0.875 1.669 ‘ 2.352 l 2.892 3.267 3.489
k=0 l
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MARIA JANKIEWICZ (Wroelaw)

JAWNE WZORY NA INTENSYWNOSCI PRZEJSCIA
W SYSTEMIE MASOWE] OBSLUGI E,/E;/n

STRESZCZENIE

W pracy rozpatruje sie system masowej obstugi, w ktérym odstepy miedzy
zgloszeniami do systemu s3 niezaleznymi zmiennymi losowymi o jednakowym rozkla-
dzie Erlanga rzedu 2 i czas obslugi pojedynczej jednostki ma rozklad Erlanga rzedu 2.
Zgloszenia s3 obslugiwane w = niezaleznych liniach obstugi, przy czym jednostka
rezygnuje z obstugi, jesli zastaje wszystkie linie zajete.

Dla tego systemu analizuje si¢ stan zdefiniowany jako liczba jednostek znaj-
dujacych sie w systemie przy uzyciu metody rozbudowanego procesu Markowa X ()
o skonczonej liczbie stanow. Twierdzenie 1 podaje rekurencyjne wzory dla macierzy
intensywnoéci przejécia miedzy stanami procesu X (¢), natomiast twierdzenie 2 podaje
jawne wzory dla tych intensywnosei.

Podane wzory zastosowano do analizy pracy grupy odjazdowej torow kolejowej
stacji rozrzadowe]j, dla ktorej w oparciu o rzeczywiste parametry obliczono rozklady
liczby zajetych tordéw.



