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RANK CONDITIONS FOR ESTIMABILITY OF COVARIANCES

Let Y be a random vector with expectation E[Y] = XB and co-
Variance matrix

m
2= 2 0,G,.
g=1
(A precise description of the model is given in Section 2.) As usual, a linea.-r
function of ¢ — (014 ..-y0,), s2y ¢’ o, is said to be estimable if there is
@ quadratic form Y’DY such that E[Y'DY] = ¢'¢ for all ¢ and . The
main results of the paper (Section 4) are necessary and sufficient con-
ditions for estimability of such linear functions in terms of the ranks
of certain matrices. This is an extension of the work of Baksalary and
Kala [1] with respect to linear functions of f which appears naturally
a8 part of thig exposition ; they, in turn, extended the results of Milliken.[5].
For Completeness, the principle algebraic basis of all this work is given
1 the first part of Section 1; the second part contains material for dealing
With the covariance matrix. Section 2 contains the statistical prelimi-
naries for derivation of the results mentioned above.

1. Algebraic preliminaries. The following paragraph is standard
(see, e.g., [2)):

et F, and F, be finite-dimensional vector spaces and let T be a
linear transformation from F, into F,. Then #(T) = {Tf: f e F,} is

4 subspace of F, whose dimension dimZ(T) is equal to the rank (7).
For //(T) = (feF,: Tf = 0},

dim#(T)+4dim #(T) = dim F,.
Baksalary and Kala [1] used this to get a rank condition for the

Solution of a system of matrix equations:

Let the matrices X, being M x N, and A, being M X K, be given;
let I, denote an M x M identity matrix. Let F, = R(X)and T = Iy —
—AA~, where A~ is any generzlized inverse of A (see [7]). /(T) = Z(X)D
NR(A) since (I,,—AA™)f =0 iff AA™f =f ift fep(A); also, #(T)

4 — Zastos, Mat, 18,1



50 G. 8. Rogers

= R((Iy—AA~)X). Hence
dim# (I —AA™) X)+dim (2 (X)NR(4)) = dimR(X)

or
dim R (I —AA™)X) = dim#(X)—dim (2 (X) n#(4)).

Then
e((Iy—AA7)X) = o(X)—e(4)
iff
o(R(X)NR(A)) = o(A) iff R(A) = R(X) iff A =XX"A
iff there is a D such that 4 = XD.
As in [5],

e((Iy—AA7)X) = o((Iy—AA™) X ((I—A4A47) X))
=tr(Iy—AA~) X((Iy—AA7)X)™

since the matrix in the trace is idempotent. Obviously, the rank (trace)
condition is easier to check than the other necessary and sufficient con-
ditions. The general solution is then

D=XA+(Iy—-X"X)Z,

where Z is an arbitrary (N X K)-matrix.

The following notation and concepts will be used later. For the
(¢ X s)-matrix € with columns ¢, ¢,,...,¢,, #(C) = (¢1, ¢y ..., €)' is an
(st x1)-vector called the pack of C (see [4]). When the product ABC is
defined, #(4BC) = (C'®A)#(B), where ® denotes the Kronecker prod-

m
uct. The trace of a product ABis trAB = #'(A")?(B).For 2 = } ¢,G,,
gm=1

m
2(Z) = ) 0,2(6,) = @0,
g=1
where @' = (2(G), ..., 2(Gy)). Also, 2(C') = I, ,#(C), where I, is
the permuted identity matrix such that the 7j-th submatrix is ¢ x ¢t with 1
at its ji-th position and zeroes elsewhere.

2. Statistical format. The (» x1)-vector Y has components which
are real random variables with mean E[Y] = Xf, where X is a known
(n X p)-matrix and g is a (p x1)-vector of parameters in an open subset
2, of the real Euclidean p-space R?. The covariance matrix of Y is

m
= Z 0,G,,
g=1

where @,,...,G, are known linearly independent symmetric (n X n)-
matrices fixed for o = (¢y,...,0,) in an open subset 2, of R™,
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m << n(n+1)/2. (2 is said to have a linear structure or to be patterned;
Rogers and Young [8] give a number of references utilizing this concept.)
Note that m = n(n +1)/2 is the case of an arbitrary X, non-negative definite.

Definition. If A is kxp, AB is unbiasedly estimable (u.e.) if there
is a (% X n)-matrix D such that E[DY] = Ap for all g in 2, and all ¢

in Q,. If Q' is r X m, Q' o is w. e. if there is an (r X n2)-matrix ¢’ such that
E[C'2(YY')] =Q'c for all ¢ in Q, and all B in Q,; r< m.

Now Apisu.e.iff DX = Affor all gin Q, iff DX = A is consistent.
By the results in Section 1, A’ = X'D’ is consistent iff

o((I,—A'A'") X') = o(X')—o(4")
or, equivalently,
o(X(I,—A"A)) = o(X)—o(4).

In the classical cases, X has full rank p <n and A has full rank
k< p. For a single linear function, say @', k = 1 and o(4) = e(a’) = 1.
In some problems, like hypothesis testing, it is also specified that
VB =b is consistent, where V is s xp and b is s x1, both given. Then

the variable can be considered as (f) with expectation (5) . The
condition that ApB be u.e. is then

o((I, —4’A") (X', V') = o((X', V")) —e(4").
Since 2 (V') < Z(X', V'), we have

o((L,— V'V )X, V) = ol (X', V")) —e(V")
or

e((X, V) = o((L,=V'V'7) X') + (V).
Thus 4B is u.e., given VB = b, iff

ol(Z,—4'a~)(X", V') = o{(L,—V'V'") X') +o(V') —e(4)
Or, equivalently,

@(({;)(IP_A—A)) = o(X(L,— V7)) + (V) —e(4).

. 3. Conditions for Q'c. First consider @' with » = 1, say ¢jo. Then
€6 =2'(C;) is 1 xn? with C, being n x n and
Elg2(YY)] = a,?(Z4+XBB'X') = ¢, +2'(C))P(XBF'X’)
=0Go+pX,0,X8

(see Section 1). Hence ¢jo is u.e. iff Ge, = ¢, and X', X = 0.
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Now 2(X'C; X) = (X'®X')e,; with X; = X'®X’, the necessary and
sufficient condition that ¢jo be u.e. is that

(z)e ()

be consistent. It follows that @’c is u.e. iff

[x)e - ()

is consistent; here C is n? X r, @ is m X r, and the zero matrix is p2xr.
Since

Q\~ - w
(0) =@, W),
where W' is an arbitrary (r X p2)-matrix, we have
@)E) - 7
0/\0 0 0

and some simplification is obtained by taking W’ = 0. Then the rank
condition for consistency is

I,—00Q~ G
o[ 72)) = el () ()
= o((I.— LX) (&, X)) +o(X;) — e(@)
= Q(G(Inz _XT-X1)) +o(X;) —0(@).
Note that o itself is u.e. when Q' = I,,; thus
e(X,) = Q(G(Inz — X X)) +e(Xy) —e(I,) or Q(G(Inz —X; X,)) =m.

If o((I,2—X; X,)) = n%—p(X,) < m, then o is not u. e.; here o(X,)
= o(X'®X’) = (o(X))*. Also, o is not u.e. if ¢(G) <m, whence the
condition of linear independence to begin with.

4. Symmetric forms. Up to this point, no a priori restriction has
been put on the matrices C; in the quadratic forms

¢ 2(YY) =2'(C)2(YY') =trC;YY =Y'C; Y, i=1(1)r.

Most often, these matrices are taken to be symmetric. Then
2(C) =2(C) = Inn?(C;) or (L. — I m)e; = 0.

The procedure above can then be followed through with

[ Xex
X = (I,,z —I(n.n))'
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Note that n = (I ,—Iy.)/2 =a' ==?; that is, @ is an orthogonal
projector. :

5. Forms with variance free of f. If the covariance matrix of P(YY)
is assumed to be

2(ZRZ+ZQXPP X +XB X' @)

(as it would be if Y were normally distributed), then the variance of
;2 (YY) is

(1/2)tr(C;+C}) Z(C;+C;) E+ B X’ (C;+C5) E(Ci+C) XB.
This will be free of g for all X (when there is at least one o® in 2,
such that ) ¢)G, is positive definite) iff

g=1

(C;+C)X =0

iff
(X' @I NI 2+, m))e; = O
iff
(X' QL) (I, —m)e; = 0.
Note that (C;+C)X = 0 implies X'C,X = — X'0;X, whence

B X'C;XB =0 for all § in Q,. That is, if this variance is free of f, 80 i8
the mean E[c;?(YY')].

It C; is symmetric, then me; = 0 and the above condition reduces
to (X'®I,)¢; =0 or €, X = 0. Then

(Y —Xﬁo)'C‘-(Y ‘—Xﬂo) = Y'Ci Y

for all f, in Q,; Y'C,Y is said to be translation invariant. (Rao [6] and
La Motte [3] use these various conditions on C, in related contexts.)
Proceeding as before, we infer that each q;o, i =1(1)r,is u. e. by a sym-
metric translation invariant form ¢2(YY') = Y'C,Y iff

1. —00-
9((( " §? )G\)) = o(6(I,, — X7 X))+ o(X:) — (@),

where X, = (X':;L,)'

6. Forms under a given constraint. As in the case of B, it is possible
that some linear constraint is also put on ¢, say H'o = h, H' being s Xm
and h being s x1, both given. Then, for e, being & x1,

E[(c;, &) (9’(§Y'))] —qo or (d,é) (G'a-l—g’l(;'x-'ﬂﬁ'x')) —
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for all ¢ in 2, and all g in @, iff G¢;+He; = ¢q; and (X'®X')c; = 0 are
consistent. More generally, Q' o is u.e. iff

[z, o)z - ()

where X, = X'®X’, C is n?xr, E is sxr, 0, i8 p2x 8, and 0, is p2xr.

Conditions of symmetry or translation invariance can be imposed
on Cy,...,C, by the appropriate choice of X, as indicated above. The
rank condition is

(529 )e(* 0 )7)) = elovta—xrx, B)+o@m-ct0.
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