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A SILENT-NOISY VERSUS SILENT DUEL

1. Introduction. Games of timing with several actions on both sides
were solved in [1] and [2], where a kind of symmetry in the information
Pattern was assumed. The asymmetric case has not been generally solved
Yet. The present paper as well as [3] and [4] gives a solution for simplified
aSymmetric information pattern duels.

We consider the following model of a duel: two opponents, denoted
by 4 and B, have two bullets and one bullet, respectively. The first shot
of 4 and the shot of B are not heard by the opponent. The second shot
of 4 is heard by B. The probability of hitting the opponent is a function
of time, P(t) and Q(#) for A and B, respectively, and it satisfies the
usual regularity conditions [4]. The pay-off is defined in a usual way
(see [4]).

In Section 2 we present the normal form of the game and the theorem
concerning the existence and the analytic form of optimal strategies for
both players. The proof of the theorem is divided into three parts. In
Section 3 we find a pair of the so-called corresponding equalizer strategies,
in Section 4 we prove the existence and uniqueness of the solution for
a gystem of equations describing the strategies, and in Section 5 the opti-
mality of the strategies is proved. A numerical example is given in Section 6.

2. Normal form for the game of timing. According to the description
of the game, the set of pure strategies of player 4 is given by

X = =(2,2)eR, 0< 0, <x,<1}.

Clearly, player B still having a bullet, after he has heard the second
8hot of A, shoots at ¢ = 1 when he is sure to hit the opponent. Since we
shall take it into account in the definition of the pay-off function, we may
consider ¥ = [0, 1] as the set of all pure strategies of B.

The pay-off function is an expected value of the pay-off for 4 evaluated
with respect to the probabilities of hitting P () and Q(¢).
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One can easily find that the pay-off function is of the form

(1) K(z,y) =
2Q(y) ify<ez <a,,
2Q(y) (1 — P(x1)]
=1—[1—P(x)][1—P(x)1[1 - Q(y)]— if o <y <,
[1+Q(y)][1—P(x)][1—P(x)]
if o, <z, <y.
It is easy to check that the game I' = (X, Y, K) has no solution
in pure strategies, so one has to consider a randomized extension of I
Let us define some classes of mixed strategies for both players in

which we shall seek optimal solutions.
Thus, F(z) = F(,, ©,) € F if

(2a) F(7) = F,y(2,) Fo(,)
and
0 for z, < a,,
|
(2b) Fyy) ={ [ fit)dt for a, <, < @y,
a
1 for a, < z,,
Q for z, < a,,
Zg
(2¢) Fy(a) =) [ fo(t)dt for a; <z, <1,
a2
1 for 1 < x,,
where 0 < a; < a, < 15 f,(t) > 0, t € [ay, a5]; fo(t) > 0, ¢ € [as, 1]; and
a
(2d) [ fhmat =1,
1 “
(2e) ffz(t)dt =1—a, ac(0,1).
a
The class of mixed strategies for B is defined as follows: Ge9 if
0 for y < a,,
v
(3) Gy) =1 [gmya for e, <y<1,
%@
1 for y>1,

where 0 < a;, < 1 and ¢(¢f) > 0 for every ¢ e [a;, 1]
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Now, let us introduce some useful notation:

D, = [ P(@)dFy(z;), D, = [ P(&,)dF,(ss),
(4) a) a;

B, — [ Quaey), E.— [QWi6y), E—E+5,.

In the subsequent sections we prove the following

THEOREM. The game of timing I" has a solution in mized strategies.
The optimal mixed strategies for players A and B belong to classes F and %,
respectively, and are described by the following set of equalities:

5 _ mQ)
(5) filt) = POeE’
2aQ’ (1) T'(¢
(6) falt) = %}%}L’
EP(a,)P’'(y)
(7) g(y) = Q) P*(y) for y € [ay, as),
(1-E)P'(y)8(y)
W () for y €lay, 1].

The value of the game equals
(8) v =1—-2[1—P(a,)]E.
In formulas (5)-(8),
W) =P@OQO)+P@E)+Q(1) -1,

© Q' (w)[L+P(u)]
W) - du} ,

@) = exp{
J

?

PWIOw] 4)

el [
S(t) —explf W)

Parameiers hy, and E are given by

_ 2P(a,)
) t Plan) [L—P(an)|8(a0)

=) roew’
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and constanis a,, a, and a are the unique solutions of the following system
of equations:

(12) a = {[1+@Q(a,)]T(as)—1}"",
5 Q' (t)dit 1 1

13 _ _ o

(13) a}f P(1)Q*(t) Q(a,) Q(a,)T (a,)

coP@a 1 1 1 -
() f QPG = ) Fah e | s _P(“z)_:.l]'

3. Classes of corresponding equalizer strategies. Let us introduce
the following notation:

M(y) = [ K(Z,y)dF(@) and N = [K(z,9)d6(y),
X Y

where F and @ arc arbitrary mixed strategies of A and B, respectively.
F and @ are called corresponding equalizer strategies [2] if

M(y)
N(z) =9 for every ¥ € supplt,

g' for every y € suppG\ {1},

where » and 7 are some constants.

In this section we prove that there exist corresponding equalizer
strategies and that they are of the form stated in the Theorem.

Let y e supp@\ {1}, G € 4 and F € #. Then, by (1), (2a)-(2e) and (4),
we have

M(y) =1—(1—D;)(1~Dy)—Q(y) [2 [ P(a)fy (@) day+(1—Dy)(1 +Dz)]

for y € [a,, a,]

and

M(y) =1—(1—D)(1—Dy)—(1—D)) [ [ (14+QW) (L =P @) falwn duy+
ay

+2Q() | fz(wz)dmz+Q(y)(D2+2a—1)] for y < [a, 1).
v

We require that the function M (y) be constant in [a,, 1) or M'(y) = 0
for y €{a,,1). Hence we obtain

2P(y)f(y) _ 9w
2 [ P fy(@)da,+ (A —Dy+ Dy ¢

(15) for y € [a,, a,]
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and

(16) -, I 1), Q'(y)

f L= P(@p)1fs(@n) dma+2 [ folwp)dms +2a—1+D, 7 W)
for y € [a,, 1).

The integral equation (15) has the unique solution given by (5).
From (15) and (5) it follows also that

(17) 2h, = Q(as)(1 —D,)(L+ Dy).

Now, multiplying both sides of (16) by —[1+P(y)] and using (2e),
we obtain '

(16") —[1+P(9)1f2(9) _ —Q@i+Py)]
a+D,— [ P(@,)folws)dws+ [ fols)de, W)

. Next, we use (4) in (16') and finally we obtain the equation

“L+PWILG)  _ —@@)1+PE)]
Ba-t [[1+ P(as)]fs(@s) des W)

and its solution given by (6).

Now, let F € # be the strategy with f,(x;) and f,(x,) defined by (5)
and (6), respectively. Since M (y) is continuous at y = a,, we see that

M(y) =1—(1—D,)(1—D;)—Q(as)(L—D,)(1+D,) = v
for every y €{a,,1).

Now, we deal with N (z). Using (1) and the fact that G € ¥ we find
that for % e supp F
a3
(18)  N(z) =1-2E,+2 [ Q(¥)P(x1)g(y)dy —[1—P(a1)]R(x,),
a |
Where

Ta

R(zy) = 1—E)[1—P@)1+2 [ @)g(v)dy+
a2

(19)

+L—Plo)) [ 1+QW)lgw)dy.
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We require that the function N(x,,#,) be constant for z, € [a,, a,)
and «, € [a,, 1] or

N _o ama X _ —[1—P(z,)]

. 0
0xy ox,

a —_—
ox,

in the corresponding intervals.
The second condition implies that

o) .. —(FQ@lg@)
1-E+ [[14+Q(y)1g(y)dy
=P (2,)[1+Q(x,)]
= Wiz for z, € [a,, 1]

and that (7) is the solution of (20). From that condition it follows also
that R(x,) is a constant in [a@,,1]. We denote this constant by 2R, and
calculate

(21) 2R, = B(a;) = [1—P(a,)](1— E)8(ar).
On the other hand, using (4) we get
(22) 2R, = R(1) = 2E,.
Now, equation (18) takes the form
(18)  N(Z) =1—-2F,+2P(%;) [ Q(y)g(y)dy—2R,[1—P(x,)],
n

and the condition ¢N/dx, = 0 for =z, € [a,, a,) and =z, €[a,,1] yields

. —Q(z,)g(2,) _ —P'(z,)

(23) : =
Ro+ [ Q)g(y)dy (@)
The solution of (23) is
_ P(ay) By P'(y)
(24) 9(y) = 0P Q) for y € [a,, a,].

By (4) we have

i 1 1 _ _1.:)(‘1'2) _
”‘ By =P ‘“”R“[P(al) - P(az)] = [P(al) 1]'

Hence
P(a,)

E1+Ro = RO-F(—G:_)—’
1
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and using (22) we obtain
(25) R,P(a,) = EP(ay).

Finally, (25) brings (24) to (7).
_ Thus, we have proved that N (%) is constant for every Z e suppF
iff @@ ang g(y) is given by (7).

Putting #, = a, in (18') and using (22) and (25), we notice that
(26) % =1-—2[1—P(a,)]E.
Further, by (21) and (25) we have

2FE _ P(az)[1—P(as)]8(a,)
1-E P(a,)

or — after transformation — equality (10).

Now, we may evaluate parameters D, and D.,, in (4). We use (5) to
obtain

1 1
) Dy =4 [Q(a,) Q(an

Eliminating D, in (17) and (27) we get

25 ESUE
(28) _— = == + - - =
1 1 1-D,
(28) - = + — - =
(28) _— = =T “"“ P - p—
(28) —_— = — -+ - —
1 1 1-D,
(28) _— = T + = - =
(28) — = =T “"“ - - —
1 1 1-D,
(28) —_— = == + p - =
1 1 1-D,
(28) — = T + p =
(28) _— = == + - - =
1 1 1-D,
(28) — = 4 — , =
(28) - = T “"“ P - p—
(28) _— = == + - - =
1 1 1-D,
(28) _— = T + = - =
(28) — = =T “"“ - - —
(28) _— = == + . - =
1 1 1-D,
(28) — = -z + = - =
(28) _— = == + - - =
(28) r_r . 1-D
b 1T 1 T 1—D.
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Next, by (3) and (7) we obtain

1

~ BP(@)P'(y) [ u=Brwse

32 =
(52) Q(y) P (y) W(y)

dy =1,

where F is given by (10).

Now, we shall get equivalent forms of (30), (11) and (32) in order to
discuss the existence of the solution.

In the sequel we shall use the following relations:

d _ =2P'(3)Q®)8(Y)
d —2Q' ()P ()T ()

The integral in (30), by integration by parts and (33), ma& be reduced
to the form

- Q' () 1+Q(as)
y W (a5) T(®,)dz, = —1+T(ay) _‘2‘_‘7

which results in (12).
We can use equation (12) to find that

1—aT(a;)  T(a)Q(ay)—1
T(e) T(ay)

(34)

. Applying (31) and (34) in (11) we obtain equation (13).
Finally, we discuss equation (32). Let us use (33) in the second in-
tegral in (32). Applying integration by parts we have

~ Ply)dy [1+1>(a,) ]
£P 1 2\ 1—-E)| —; S 2 -1l =1
(“)alf ewPy) Y (a)
or
(35) ¢ Pydy _ 2—E  (1—E)[1+P(a;)18(a)
J QWP ~ EP(a) 2EP (a,) :

Now, combining relations (35) and (10) we get equation (14).

Thus, instead of equations (30), (11) and (32) we consider the system
(12), (13) and (14). We prove that this system has a unique solution a,, a,
and a.
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- First, let us define three auxiliary functions:

(36) a(z;) = {[14+Q(2)]T(m) =1}  for 2, € (t, 1],
(37) H,(z, _ 2 Qwdu 1 1 1
(215 2) P)Qw Qw10

for 2, € (f, 11, 2 € [0, z,),

(38)  Hy(z, 2,) = 5 Pl(u)ydw 1
) WP Pl

— 1 4
P(z)) [1—P(z,)] [S(zl) — P(z) —1] for z, € (t,, 1], 2; € [0, 2,].

_ Wf} study some properties of these functions which are useful in
discussing the existence and uniqueness of the solution for equations

(12), (13) and (14). The variables 2, and z,, z; play a role of a, and a;,
respectively.

Thus, we see that a(z,) is continuous in (¢, 1], ¢(1) = 1, and
lim a(z2,) =0,
ot
2t
da _ 27(2,)Q’ (1)
dz, W (2) [T(zx)'[l +@(21)] _1l2
. Hence, there exists a unique value a € (0, 1) satisfying (12) for every
fixed 2, = a, e (o, 1).
Now, we prove that relations (37) and (38) define some functions
By = z?(zl) and z; = 2(2,) and we study the propertics of the functions.
First, let us remark that the function H,(z,, 2,) is continuous in its
range of definition together with its partial derivatives

oH, _ ¢'(x) [ 1 1-P(z) ] 0
(39) 0z, Qz) LP(z)  T(2)W(z) ’
¢H, Q' (2) [ 1
= - -1} <0.
02, Q*(2) L P(zy) ]
Next, the function H, has the following properties:
T_(zl) —1+T(2,)Q(2)

> 0.

H,(z = —
121, 1) TeoQe)
(40) lim H,(2,,2,) = + oo,
22’—>0+
oH,
<0

02, )
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Hence, for every fixed z, € (¢,, 1) there exists a unique value 2, € (0, 2,)
which satisfies the condition H,(z,, z,) = 0.
Using inequalities (39) we find that

dz, 0H, |0z,

41 —_—— e — .
(41) iz, oH, |7z, >0 for z, e(t,, 1]

Taking into account (37) we obtain

(42) lim 2,(2,) = 2,(1) > 0, lim 2,(2,) = 2:(%),
‘l—’l_ 'r—b';-

and, by (41),
2a(to) < 23(1).

Thus, equation (37) defines 2, as a unique, differentiable and increasing
function of z, in (¢,, 1) with 2, € (0, 2;) or for every fixed value of 2,
= @, € (ty, 1) there is a unique value 2, = a, € (0, a,) satisfying equa-
tion (13).

Similarly we discuss relation (38). The partial derivatives of H,
are the following:

0H, P'(z,) P'(z,) 2P’(zl) (1 —2P(zl))

B T 0@PE) | Pla) | P I—PE)f
4P (5) @P(5)Q(5) — [1—P(2)IW (2}
S(zl)Pz (2y)[1 _P(zl)]zw(zl) ’
oH, P'(25)[1 —P(2)]
(44) QP

In the sequel we shall use the fact that the equation
P(2)8(%)—2 =0

has exactly one solution in (¢, 1).
In order to prove the fact let us notice that

Q(21) —flﬂ

[P(21)8(2,)] = P'(21)Q(21) Wy =V

lim P(2,)8(2,) = +o00, lim P(2,)8(?,) = 1.

ll*l;- zl—’l B

We shall use also the following inequality:
(45) 2P(2,)Q(2,) —[1 —P(2)]W(2) > 0  for 2, € (2, 1].
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Inequality (45) may be written as

P*(2,) [1+Q(21)]— [2P(2) —11[1—Q(2,)] > 0,

and its validity is easily seen.

Now, we ecan' specify the sign of 9H,/dz,. By (40), (45) and (43) we
obtain

é;iz: - P’ (2)[1 —Q(21)][(1 — P (21)) W (2,) —2P(2,) Q (24)] <0

P2(2,)Q(21) [1 — P(2,)1W (2,)

for 2, € (t,, 1),
where P(t,)8(1,) = 2.
Hence, by (44), we have

dzg 0H, |0z,
S % g g t.1).
dz, oH,jon, =0 foraclyl)

Notice that the function H, has the following properties:

. 2 —P(z)8(2)
P(z)[1—P(z)]

lim Hz(zl, za) - +w-
t1—>0+

H,y(z,,2,) =

<0 for 2, €(y, 1),

Thus, for every fixed z, € (t,, 1) there is a unique value 2; € [0,2,] -
8atisfying the relation H,(z,,z,) = 0.
Now, we use relation (38) to find that

(46) lim 2,(2,) =0 and lim z(z,) ={,.

51""1 - Zl%tii-

. So, relation (38) defines 2308 2 unique differentiable function increasing
I z, in (¢,, 1) or for every fixed 2, = a, € (t,, 1) there is a unique value
% = a, €(0, a,) satisfying equation (14).

Taking into account the properties of the functions z,(z,) and 2;(z,)
- and equalities (42) and (46) we see that

Za(ty) < 23(ty),  22(1) > lim 24(2,)
zl-»l"‘

and that there exists a unique value 2} € (t,, 1) for which
2:(21) = 2(27).

Now, we put a, = 2}, a, = 2,(2}) = 2(2}) and a = a(2}) and obtain
% unique solution of (12), (13) and (14). The solution and relations (10)
‘“}d (11) define completely the strategies described in the previous section.
We denote the strategies by T', and T'; for players A and B, respectively.
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To end this section, we notice that one can easily prove that
V=9 =0,
where v is the value of the game given by (8).

5. Proof of optimality for 7', and T5. To prove the optimality of T,
and T it is sufficient to show that '

(47) min M (y) = v,
ye¥

(48) max N(Z) = v.
zeX

For proving (47) we consider three cases.
1° Let y € [0, a,). By (1) we have

K(z,y) =1—[1—P(z)][1—P(x;)]1[1 —Q(¥)]—-2Q(y),
and applying (4) we obtain
M(y) = D,+(1—D,)Dy—[1+D,+(1—D,) D, ]Q(y) > M(a,) = v.

2° If y € [a,, 1), then M (y) = ».
3° Let y =1 and y; =1—4, 0 < d<1—a,. We use equality (1)
to find that

K(@y, %o Ys) — K (24, 725 1)

0 _ if Ly < Yy
={ —[1—P(x)][P(23)Q(ys) + P(2) +Q () —1] UK y< @, <1,
—~[1—P(2,)][1 —2Q(y,)] if z, =1.

Now, we may take ¢ sufficiently small such that @(y,;) > 0.5 and
P(2,)Q(ys) + P (w:) +Q(ys) —1 > W(y,) >0 for x,e(1—-9,1).

After integration we obtain
M(1) > M(y,) = v-
Thus, taking into account all cases enumerated above we conclude
that equality (47) is wvalid.

Now we discuss equality (48). There are six cases to be considered.

1° Let 0 < 2, < %, < a,. Then player B applies his pure strategy
y =1, since he knows that 4 has no bullet. Using (1) we observe that
N (21, 2:) < N(ay, a,).
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2° Let a, < #, < ®, < a,. Using (1) and performing some simplifying
transformations, we obtain

(49) N(@y, ) = 1—28,+2P(z)) [ Q(®)9(y)dy —[1—P(2))]1U(zy),

where

U(z,) =
(1—E)[1—P(x,)]+ [1—P ()] [ 1+Q9w)g(y)dy —2 [eweway.
Here we observe that

U(@:)~U(as) = (1—E)[P(as) —P(2:)]1-2 [ Q(y)g(y)dy+

1 a
+IP(a,)~P(2,)] [ [1+Q(y)1g(y)dy+[1—P(2)] [ [1+Q(y)1g(y)dy.

T2

Now, we use the evident inequality 1+ @Q(f) > 2Q(?) and formula (7)
to find that

(50) U (x,) — U(ay) > [P(as) — P (2,)1(1 — E)P(a,) 8(a,) > 0.

From (49) and (50) we conclude that N (x,, #,) < N (xy, a,) = v.
3° Let 0 < x, < a, <, < ay. Then by (1) we have

N(@y, 2,) =1-[1—P@){1-B)[1—-P@)]+ [ 2Q@)g(y)dy+

+ [ [1+Q)I[1—P(w:)]g(y)dy}

and it is easy to see that N (x,, ,) < N (a,, ;) = .
4° Let z, € [a,, a,) and @, € [a,,1]. Then we have already known
that N(2y, x,) = .

5° Let a, < 2, < #, < 1. Using (1) and performing some simplifying
transformations, we obtain

N (@, 2,) = 1—2E, —2R,+2P(2,) [Bo— [ Q()9(y)dy],

Where R, is given by (21). From (7), (21) and (33) we get

2 v {[1—P(a,)]18(ay) — [1 —P(2,)]8(x,)}

-1
f Q) g(y)dy =
)
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and, therefore,
N(zy, @) =1—2E,—2Ry+(1—E)[1—P(x,)]1P(x,)S(x,).
Now, we find that

P(z,)8 (373)
W (z,)
and from inequality (47) and the fact that a, > ¢, we infer that N(z,, x,)

is a decreasing function of x, and N (z,, 2,) < N(a,, z,) = o.
6° Let x, < @, and «, € [a,, 1]. Similarly as in case 3° we find that

N (%, %) =1—[1—P(x,)][2E; + E(2,)],

{[1—P(x,))P(2,) 8 ()} = - {1 —P(x,)]W (x,) —2P (2,)Q(x,)},

where the function E(x,) is given in (33). Since R(z,) = 2R, > 0, we see
that N (x,, 2,) < N(a,, ;) = v.

Taking into account the six cases considered above we notice that
equality (47) is true.

Thus, by (47) and (48) we have the optimality of strategies stated
in the Theorem.

6. A numerical example. Let us assume that P(t) = Q(f) =t. The
system of equations (12), (13) and (14) is of the form

l1+a, _ l14+a
Ve W (a,) 2a

’

1 .1 1 1
2 24 @ a /2 /W (a,)
1 1 1 1 4
2% 2 T @ eyl (VW _1—“2)’

where W () = ##--2t—1 and W(t,) = 0 for t, = V2 —1. We find that
a, = 0.3061, a, = 0.5224 and a = 0.3543. Applying (10), (11) and (8) we
obtain #, = 0.5057, h, = 0.4834 and v = 0.2929, respectively. One can
compare the value of the considered game with the value for the two-silent
versus one-silent duel [2], where it is equal to 0.3065.
Finally, equalities (5), (6) and (7) take the form
fl(t) = hlt_sy
fo(t) = 2V2a[W ()],
) a,By~? for y € [a,, a,),
T a-mvEwer  tor yela, 11,

respectively.
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A. STYSZYNSKI] (Wreclaw)

GRA CZASOWA TYPU AKCJI CICHO-GLOSNEJ PRZECIWKO AKC)I CICHE)

STRESZCZENIE

W pracy podano rozwigzanie dla gry czasowej typu dwu akeji, cichej i gloénej,
Przeciwko akeji cichej przy zalozeniu, ze gracze maja rozne funkecje sukcesu. Dla obu
graczy znaleziono optymalne, mieszane strategie. Przedstawiono réwmiei przyklad
liczbowy Tozwazanej gry czasowej.



