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A REAL-TIME METHOD FOR FAST DETERMINATION OF THE
FUNDAMENTAL FREQUENCY

1. Introduction and technical requirements.

1.1. The first attempts to determine the period of a complicated
function were started in the 18th century, when Lagrange had published
his initial works. The necessity of solving such a problem has been dic-
tated by the development of both astronomy and geophysics. Today,
the main field of application of period determination methods are vib-
rating phenomena in technics. On the other hand the development of
the theory of statistical phenomena makes it possible to generalize the
problem and to formulate it more clearly. Also the advances in tele-
communication based upon the periodic transient as a carrier of infor-
mation set to the methods of periodicity determination quite new tasks.

While previously the time needed for problem solving was not a most
important parameter, now the interest in telecommunication stresses
the importance of developing methods which make it possible to solve
the period determination problem in “real time”. On the other hand
the realization of such a method in the form of electronic equipment
should be comparatively inexpensive for the actual technology.

In this paper we propose a solution of the problem mentioned above.
The concrete technical conclusions are drawn from the theory constructed
for this purpose. Some information concerning the special electronic
equipment and realizations may be also found in [1], [2], [3], and [4].
From the multitude of applications of our method we can mention for
example:

a. Determination of the fundamental frequency of a human voice.
It is an important parameter playing the role in analysis and synthesis
of speach as a carrier of information concerning affection of the speach.

b. Telemetric methods of information transmission by pulse modu-
lation systems. It may happen that the transmission channel introduces
phase-shift and attenuation for some frequencies creating additional zeros
inside of a pulse. On the receiver side the previous shape of the pulse must
be reproduced, and this requires the elimination of extra zeros, too.

¢. Automatic recording of frequency in musical research (see e.g. [3]).
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1.2. Let us consider a periodical transient with unknown period.
Without loss of generality we may assume that it is given in the form
of electrical voltage. The value of period is of our interest and the time
given for its determination is only its small multiple. At the same time
1t is desired to convert step-changes in period-length into analogous
form of voltage without the distorsion caused by the time-constant.
The measurement must take place in real time, i.e. without the con-
ventional memory circuits from which the information could be taken
for a multiplex analysis. Attention should be paid to the possibility of
the bounded but high contents of harmonics in the transient. For this
reason the application of conventional methods of frequency measu-
rement based upon counting zeros or measuring time between conse-
cutive zeros by analog or digital device is impossible. Up today only the
method of autocorrelation function in its full form, or limited to some
symptomatic feature of function, gives the correct solution of the problem
(see e.g. [6], Chapter 6).

In the sequel we shall show a number of transformations defined
on periodic functions and easy for electrical realization. By means of
such a transformation the periods of complicated signals can also be
designated. Our method seems to be easier in electronic realization and
more reasonable for practical purposes than the methods used up today.

2. Mathematical model and description of the method.

2.1. As a model for our periodical transient we choose, for the pre-
sent, a real Lebesgue-measurable function f,(¢) having bounded variation
on every finite interval, finite period 7, and the mean value equal zero.
Every such function may be represented in the form of Fourier series

N (ancos[(2mnt)/T]+ bysin [(2wnt) /T])

almost everywhere convergent to f,. It follows in the straightforward
manner from the Dirichlet-Jordan theorem (see e.g. [7], Chapter II, 8)
and from the fact the set of discontinuity points of a function with boun-
ded wvariation has measure zero. Technical requirements (dumping of
high frequencies) tell us that we can cut our series up without loss of
precision. Now we see that a trigonometric polynomial

M

(1) f(t) = Z(ancos[(znnt)/T]-{—bnsin[(2nnt) /T),

n=1

where M is sufficiently large (and equal to the highest admissible fre-
quency in the signal), is the enough reasonable model for our purpose;
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it is also the best L2[0, T]-approximation of f, by a trigonometric poly-
nomial of M-th order. The coefficients a, and b, are real and we assume
a3 +b%r # 0.1In the sequel we shall also deal with polynomials of the
form (1), where coefficients are random variables.

On the real axis there is a countable set Z;, say ... <i_;, <{, <
<t <..., of points (further called distinguished zeros of f) such that
for every a;, B; such that: o; < t; << f; and both |o;—1t;| and |B;—1;| are
sufficiently small; holds

fla;) <0, f(B:) >0, t=..,—1,0,1,...

For a differentiable function «(f) (and such is f(¢)) the distinguished
zeros t; are exactly these ordinary zeros of = (z(¢;) = 0) for which the
additional condition #’(#;) > 0 is satisfied. In every interval of lenght T
the number(!) N = |9; ~ [t,1+ T)| of distinguished zeros is finite and
does not exceed M (see e.g. [7], Chapter X, Theorem 1.7.). Of course
tx_xy —t = T for any integer k.

Now we shall outline a method for determination of the period of
function f. First, we transform f into the function F* by means of ope-
rator €*. Its acting can be described by the formula(2)

F*1t) = (©f)(#t) = {ti—ti_, for teltiyti), t=...,—1,0,1,...}.

We recall that #;¢%;. By € we denote the operator that is defined by
means of formula

Cf = F = ¢ f—C*f
where

1 4T
2) 0:*f=-T—f (©*f) (1) .
t

The mean value (-5*—]‘ should be calculated in an approximate way since
the period 7' is essentially unknown. It is another question and we do not
discuss it in detail, but at once it is easy to see that the interval of inte-

(*) By |4]| we denote the number of elements of the set A.
(%) Instead of €* we may use some other operators, for example

t:
€N @) ={ f|f(t)|dt for telti,tiy1), ¢ =...,—1,0,1,...},
ti—1
or
((ng)(t)={ max If(t)l fOl' te[t‘i9t’i+1’) Ii="',_190’1’---}'
€[li—1.%)

Their realization in the form of electronic circuits is also possible and the rest of the
method remains the same.
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gration in (2) should be then taken as large as it is possible. €f is constant
over the intervals between two consecutive distinguished zeros and,
as instantly follows, it also has the period 7. Obviously D5 < 9; and,
moreover,

|Der ~ [8, 1+ T)| < (N+1)/2 < (M+1)/2.

Thus in the sequence of (well defined) iterations of €: €f, €2f, ..., C"f, ...
the number of distinguished zeros |Dgn; ~ [t,t+ T)| decreases at least
in a geometric progression. If |D¢x; ~ [t,t+ T)] = 1 we finish our proce-
dure. Now for the function GXf the distance between two succesive
distinguished zeros is the sought period T of f. We easily can measure
this distance (CX+'f = T).

From the electronic point of view the number K of necessary ite-
rations is of interest. Complicacy of a circuit to perform succesive tran-
sformations €" increases together with K. K is necessarily finite (except
the case mentioned below) by virtue of assumptions on the function f
and, as it is easy to check, its order can be estimated by log,M . Therefore
we see that the complicacy of the needed circuit (it will be described
in Section 3) depends on the highest admissible frequency in the signal.

It could also happen that |Zgn; ~ [t,t+T)| # 1 for all integers n.
This is possible only if [r;— 7;_,| = const (independently of ), where
7;€ Dgny for some n, but this constant is not equal to 7. Then, obviously,
T is a multiple of this constant and to determine it we may use other
methods (for example other transformations indicated in the footnote 2).
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2.2, An example; in Figure 1 we show a typical example of the
functioning of the method which has been described in Section 2.1.
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2.3. Let now

h! s
f(ty 0) = Y (an(w)cos [(2mnt) /T]+ by () sin [(2nnt)/T])

n=1
be a trigonometric polynomial with randomly distributed coefficients
(we[0,1] is a random parameter). Suppose that the random variables
a,(w) and b,(w) have finite first moments and that the distribution
funetions of the a,’s and b,’s are not degenerate i.e. for all n and for each
real number a Pr{a,(w) = a} = Pr{b,(w) = a} = 0. Under these as-
sumptions, with probability 1, the realization f(t, w,), woe[0, 1], of the
stochastic process f(¢, ») is a periodical function with period 7' and the
number of distinguished zeros inside of the period is, with probability 1,
less than M. Hence the whole precedent theory applies “almost surely”.
The special interest is paid to the case when the a,’s and b,’s are normally
distributed mutually independent random variables. This corresponds
to the existence of a white noise in our circuit. It would be interesting
to estimate in this case more precisely, from the probabilistic point of
view, the number of real zeros in the period. As far as we know, there
are no general results in this field. We may quote only the theorem of

Dunnage [5] concerning the random trigonometric polynomials of the
form
M

P(t, ©) = Y an(w)cos[(2mnt)[T],
n=1
where {a,(w)} is a sequence of independent, normally distributed random
variables, each having the distribution N[0, 1]. Using the Kac-Steinhaus
method of independent functions Dunnage proved that when M is large
the polynomial ¢ (¢, ») with probability P = 1— (log M)~! has (2 /1/5 YM -+
-+ O(M113(log M)3/13) real zeros in the interval [¢,t+7T). Applying
this result for our purposes we get that to find the period of ¢ the number

of necessary iterations of € is of the order log,(M /Vg). Probability P
increases quickly with M.

3. Realization.

The work performed by the circuit presented at the Fig. 2 could be
described as follows.

The function f(¢) is converted in block A into a set of distinguished
zeros, which synchronize block B creating the transformation €. The
zeros from 4 are delivered to the frequency dividing circuit C and every
“Z”, zero synchronizes the integrating block D. The output voltage
from D divided by “Z” is compared in the difference creating circuit F.
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If the output from F is equal to zero, the information is delivered to
gate G so that the path for the distinguished zeros from A should be
opened. The fast response time-to-voltage converter converts the distance
between the zeros into the voltage and displays it on the meter. If the
output from block F is not equal to zero but is a signal with varying

Fig. 2

polarity then the zeros of the new signal are distinguished by block A4’
and a new transformation ¢ is created by the circuit identical to the des-
cribed one. In this case the converter H utilizes the zeros not from block A,
but the zeros created by block A’ (under the condition that the output
from the corresponding block F’ is equal to zero). On the principle of
iterating the transformations an arbitrary number of desribed circuits
can be connected. The limitation given in Section 2 can also be omitted
on the expence of response time. Practical circuits have been built, pro-
ving the described theory. On the base of them some instruments have
been constructed for different practical purposes.
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METODA PRZYBLIZONEGO WYZNACZANIA CZESTOTLIWOSCI PODSTAWOWE]
W CZASIE REALNYM

STRESZCZENIE

W pracy podano pewna metode szybkiego wyznaczania okresu periodycznych
sygnaldéw o nieznanym okresie. Metoda ta pozwala mierzyé okres skomplikowanych
nawet przebiegéw bez opdinien spowodowanych w zwykle w takich przypadkach
stosowanych urzadzeniach przez stala czasowy lub urzadzenia pamieciowe. W celu
przedyskutowania metody zbudowano pewien model matematyczny badanego sygnatu
(dopuszezajacy réwniez stochastyczne szumy). Wreszcie podano opis i schemat blo-
kowy elektronicznego urzadzenia pracujacego wedlug podanej i przedyskutowanej
metody. Wskazano réowniez kilka zastosowan.

H. A. YEKAEBCKM (Ynncana) @ B. A. BOMYHHLBCKH (Bpousnas)
METO/J BbBICTPOI'O OIIPEJEJEHUA OCHOBOI YACTOTHI
B PEAJIBHOM BPEMEHU

PESIOME

B crarpum ykazsaH wMmeronx OHICTPOro oOImpeAelieHHA Iepuofa INepHuOAMYECKOro
curiana. IlpemcraBieHHHI MeTOJ II03BOJNAET WM3MEPATH NEpUOJ, [ame CJIOMHEBIX
npoueccoB 6e3 3aMa3HBAHUA BH3BAHHOTO BIMAHMEM BpPEeMEHHOI NMOCTOAHHON M CBOIi-
CTBAMI 3aMOMMHAILIAX YCTPOKCTB, KOTOpPHE OOHYHO NMPUMEHAKTCA HJIA 3TOH Ieu.

Jad namocTpalluy MeTofa NOCTPOEHA MaTeMaTu4ecKad MOJeNb MCCIe[0BAHHOTO
CUTHala (37eCh [ONYyCKAeTCA BO3MOKHOCTb CTOXACTHM4ECKOro miyma). B 3aKIo04YeHHUHN
mpeficTaBlleHO OIMCaHMe M OJOK cXeMa JJIEKTPOHHOFO YycTpoiicTBa, paboTawuiero
10 M3I0KeHHOMY npuHUuny. KpoMe TOro yKasaHH HEKOTOpPHe NpUMeHEHUA IpeJ-
JaraeMoro MeTtoja.



