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PURSUIT GAMES WITH BOUNDED ACCELERATIONS

1. H. Steinhaus drew in [12] attention to the mathematical problem
of pursuit and evasion as early as in 1925. It appeared that the theory
of this game is similar to a certain kind of mechanics of a system of
material points into which some antagonistic elements characterizing
the games have been introduced. An example of such a game can be
given as a pursuit of one ship by another ship or of one plane by another
plane, provided that the adversaries do not see each other in the course
of pursuit, and that their maximal velocities are bounded; one of the
adversaries — the pursuer — tries to capture the evader as soon as pos-
sible, while the latter has a quite opposite tendency and makes all attempts
to make his evasion as much as possible delayed. It is easy to imagine
various generalizations of such games. They can be realized either by
introducing a greater number of partners divided into two fighting par-
ties, or by assuming more general conditions for maximal velocities or
for spaces in which the pursuit takes place, etc. These problems have
been dealt with among others in the papers [3], [7], [11], [13]-[17].
In particular we should like to draw the reader’s attention to the paper
[17] to which our paper bears many relations.

In the theory of pursuit games considered in this paper we use diffe-
rential equations; the games described in this way are called differential
games. The way in which the problems are formulated here resembles
the theory of dynamic processes ([1],[5],[9]). On the other hand, the
control process may be considered as a particular case of differential games.
Namely, if we simplify the game by assuming that one of the partners
knows the strategy of his adversary (the adversary is deciphered) then
such a differential game reduces to a problem of the theory of control
processes, being called there the problem of the theory of games, though,
strictly speaking it loses then its character of game. All, so far used,
applications of the theory of control processes to a more general theory,
i.e. to the theory of differential games, refer exclusively to such simp-
lified “one-person” games ([2],[4],[10]). This situation can be explained
by mathematical difficulties encountered in the theory of control processes



which become exceedingly greater if this theory is to be applied to diffe--
rential games ([5], p. 163). For this reason, although the notions and
mathematical tools of the theory of control processes are adjusted to the
theory of differential games, no deeper results have been obtained. The-
refore concrete problems solved directly are still of interest in the theory
of differential games. Since, however, non-trivial problems are usually
very difficult, there are not many positive results which could be quoted.
Even in the problems which are easy to formulate the authors must take
different and non-natural assumptions to obtain at-least partial results.

In the present paper we are concerned with a pursuit game with
one evader and one pursuer. The pursuit takes place in an n-dimensional
Euclidean space. The evader and the pursuer know at each moment
the positions and velocity vectors both of their own and of their adver-
sary, their accelerations being regulated by them to a certain extent
arbitrarily. Speaking more exactly, according to the physical nature
of the problem, we assume that the acceleration of the elements taking
part in the game are bounded.

The class of evader-strategies consists of continuous functions with
values belonging to an n-dimensional Euclidean space, of the form
fo(@oy 1, &y, &,), Where x,, &, denote the position and the velocity of the
evader, while x,,#, denote the respective bectors of the pursuer.
A similar class of functions f,(%,, , %y, ;) Will form the class of pur-
suer-strategies. We assume that these functions satisfy the following
conditions:

(1.1) [fo(@oy @1, oy &1)| < 0y, [f1(@o, @1y @y B)| < 04

where q, and a; are constants subject to the restriction ¢, < a,. If both
parties of the game, their initial positions x3, 2] and velocities 4, 4
being given, choose the strategies f, and f, then the trajectories of pursuit
and evasion are described by the differential equations:

(1.2) Fo = fo(@y Xy, oy 1), & = f1(%, @1, Tg, T,).

(In the present paper we assume the following rules of game: f < F, and
fieF;, where Fy, and F,; are classes of functions which guarantee the
existence and uniqueness of solutions of the system (1.2).) Let us further
remark that the assumptions (1.1) are fulfilled for real pursuit games
in which the antagonists really do not have unbounded accelerations
at their disposal.

Let z,(t) and z,(t) denote the solutions of equations (1.2) satisfying
the given initial conditions. By the time of pursuit we mean the earliest
moment 7' > 0 at which

lim [z(¢)—a, ()] = 0.
{>T-0
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If we put, in addition, 7 = +4- oo in the case when there is no finite 7'
satisfying the relation given above, 7 will be uniquely determined by
the choice of pursuer and evader strategies

T =T(fo, f)-

Assuming 7T to be the pay-off function, our game takes a standard form
(Fyy Fyy T(fo, f1))- Clearly, this game depends on the initial positions
and velocities. (By admitting different initial conditions we speak of
the whole class of related pursuit games.) If a game is determined then
its value is called the optimal pursuit time.

In the present paper we describe the construction of a certain func-
tion = (x3, 23, 49, 4]) and prove that this function is an optimal pursuit
time within the region in which 7 is continuous. At the same time we
prove that the game is strictly determined within the region of initial
values for which r is continuous. We give also a construction by which
optimal strategies of a game can be determined for given <.

2. Let us consider a two-person pursuit game in an n-dimensional
Euclidean space F, . The players will be called the pursuer and the evader.
The position, velocity and acceleration of the evader at any arbitrary
moment ¢ will be denoted by ,(t), 2,(?), &, (?), respectively, or in coor-
dinates, by (E6(8); &(8)y .oy & (D), (Eo(D), E5(D), ..., E0(2) and Dy (&(D),
Ea(t)y ..., Eo(t ) Similarly, the position, velocity and acceleration of the
pursuer at the moment ¢ Wﬂl be denoted by wl(t),wl() &, (t) or by
(E(8), E(1),y -y E20), (E1®), E(B), ...y (1) and by (E)1), E(2),. -y E1(2),
respectively.

A pursuit game will be in general considered in a 4-dimensional
phase space with points X = (x,, ©,, %y, #;), Where x; and z; represent
the position and the velocity of the i-th player (¢ = 0, 1), respectively.
In the sequel we shall confine ourselves to a certain domain Q of the

phase space.
We assume the following initial conditions satisfied at moment ¢ = 0

(2.1) 2;(0) = af, @(0) =4 (1=0,1)

where X° = (), o3, 4}, 4}) e Q.

Now we shall describe the strategies of pursuit and evasion. We
assume that each player determines his acceleration according to both
his own and his opponent’s positions and velocities which are assumed
to be known to him. In this way the course of a separate pursuit game
will be determined by the system of differential equations

(2.2) Fo = fo(@gy Tyy Xoy &1)y, & = f1(@g, @1, Ty, &)

with initial conditions (2.1).
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We shall state now the conditions which are to be fulfilled by the
functions f,(X) and f,(X).

Let 7(X) = v(a,, oy, %y, ;) be a certain fixed function defined and
continuous on £ and having the following properties:

1° v(@yy @1y %oy &) > O,

2° for each trajectory(l) (#o(t), z,(t), Z4(t), £,(t)) lying within the
domain £ and for each number 7' > 0, if

lim T(wo(t)’ 21(t); Zo(t), d’l(t)) =0
t—->T-0 :

then
m [#,()—2(?)] = 0.
t>T—0

Also let F; (¢ = 0,1) be fixed non-empty sets of functions f;(X)
defined and continuous on the domain 2 and such that for any function
foeFy and for any function f, e ', there exists 7' > 0 such that for 0 <t < T
there exists one and only one solution xz,(t), =,(t) of the differential equa-
tions (2.2) satisfying the initial conditions (2.1), and such that if T' < + oo,
then
(2.3) lm v (zy(2), #,(2), %(t), 44(2)) = 0.

t>T—0

Instead of the uniqueness of the solutions of the equations (2.2)
with initial conditions (2.1), the authors assume in the papers [2],[4], [10]
a stronger condition, namely that the partial derivatites of first order
of the functions f,(X) and f,(X) are continuous. ]

We shall assume, moreover, that for each function f,¢F, and for
each function f,eF, and for all X2 the following conditions are sati-
sfied :

(2.4) Ifo(X)] <, [fi(X)<ay

where a, and «, are constants satisfying the inequality
(2.5) 0 < aq < ay.

Functions f, belonging to the set ¥, will be called strategies of evasion,
while the functions f, belonging to the set F, will be called strategies of
pUrsuit.

To each pair f,, f, of the evasion and pursuit strategies there corre-
sponds uniquely a number 7 > 0 occurring in the definitions of F, and F,.
This number will be called the time of pursuit. If the time of pursuit is finite
then the boundary point of the domain £ in which the condition (2.3) holds
will be called the point of capture (since then 1_1)111'11 [2o(2)— 2, (2)] = 0).

—0

() By a trajectory we mean a curve in the phase space (z,(?), z, (), %,(t), %, (%)),
each of the components being of class Cl.
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The conditions for F,, F, and (2 described above guarantee that
we consider such pursuits and evasions for which the trajectory in the
phase space lies either constantly within the domain £ or if it reaches
the boundary point at a certain moment then at this point the capture
will take place.

The evader aims to choose such a strategy of evasion that the time
of pursuit be as long as possible, whereas the pursuer tries to find out
a strategy of pursuit with time as short as possible.

The pursuit time 7' is a functional defined on the Cartesian product
of the sets F, and F;:

T = T(fo,fl)’

where f,eFy, f;eF,. The system {(F,, F,, T) will be called a pursuit game.
In this definition F, is the set of strategies of the first player, F'; is the
set of strategies of the second player, and T is the function of the pay-
-off [6].

3. Let (F,, F,,T) be a fixed pursuit game.

LEMMA. If there exists a function e(X) continuous and positive within
the domain 2 and

1° if there exists a strategy of pursuit i ¢ F'y such that for any arbitrary
strategy of evasion fyeF, and for every X Q2 and for every number 6 such
that 0 < 6 < ¢(X) we have

(3.1) (@o+ @0 0+3fo 02 @1+ &1 64 31 0% G0+ 1o 8, &1+ 17 6) R
and
(3.2)  w(wy+Bod+ 3fo 0% o+, 6+ %‘fl* 82 @y +fo 8, @1+ f1 6)—
— T(%oy B1y Loy &) < — 6
2° if there exists a strategy of evasion fy e Fy such that for any arbitrary
strategy of pursuit fieF'; and for every X Q2 and for every number & such
that 0 < 6 < ¢(X) we have
(3.3) (@04 To 8+ 3 fo 02 @1+ @16+ 3£10% do+f5 6, &1+, 6) e
and
(8.4) (@t dod+ fs 02 @+ d1 0+ 116 B+ 5 8, B+ £18)—
— (%o Tyy Toy B1) = — 6,
then the purswit game (Fy, F,, T is determined, fy and f{ are optimal stra-
tegies of the game, and v(X°) is the value of game (optimal time of pursuit).

Proof. Let the pursuer apply a strategy fi and the evader any
arbitrary strategy f,eF,. Let us denote by z,(t), Z,(t) the solution of the
system of differential equations

(3-5) %o :fo(X)7 @y :fl*(X)
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with initial conditions (2.1). Let this solution be determined in the in-
terval 0 <t <T.
We are taking now an arbitrary closed interval 0 <¢ < t' contained

in the interval 0 <t < 7. We construct in this interval a sequence of

continuous functions Z:(t), T:(t) which for the equations (3.3) are the

Euler broken lines [8]. We divide the interval 0 < ¢ <t by means
of the points
h=0<f<fhi<.<G<H<..<tlp =1

into a finite number of subintervals; we assume
Zo(t) = mp+agt+ 3f (X8, Zi(t) = al+at+ 3f5 (X8
for 0 <t <t', and
zh(t) = () + 25 () (C— ) + 1 (Z* () e — )%,
75 (8) = T+ 2k (1) (t— 1) + 3£ (X* D) (t—0)?
for tf <t<tf,, 1=1,2,...,my—1); where X*(t) = (75(t), Z: (1), 25 (1),

(1))

Due to our assumption the trajectory X(t) =(:Eo(t),§1(t),Lw.,(t),
'El(t)), 0 <t <t lies in the domain £, therefore a continuous and po-
sitive function ¢(X) considered on this trajectory attains its smallest
positive value. Let ¢ be this value. It follows from the uniqueness of the
solutions of the equations (3.5) that if

lim max |t’{+1—t§‘| =0,

k00 oglgmk— 1

then the sequence of functions X"(t) is in the interval 0 <{¢ <t uni-
formly convergent with the function X (¢). Hence, for sufficiently large &

1IX () —X* () < &

for 0 <t < t'. Therefore, in virtue of (3.1) the trajectory X*(t), 0 <t <t
lies within the domain 9. If we now choose & so that

k k
max |t1+1—t1[ < 8’,
o<<l<my,—1

then, due to (3.2), we obtain
T(X*(1) —v(X°) < —1¢

for 0 <t < t'. The function 7z(X) is continuous in £, therefore from the
above inequality it follows that

(X ()—v(X°) < —t¢
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for 0 <t < t'. Since this inequality holds in every closed interval 0 <t <’
contamed in the interval 0 <?¢ < T, then it is also satisfied in the in-
terval 0 <t < T, i.e.

(X)) —7(X ()
for 0 <t < T. Hence, it follows that the choice of strategy f; made by
the pursuer, guarantees him the capture of the evader in a finite time, i.e.
that T < + oo, since 7(X) >0 for XeQ2. Finally, with { -~ T7—0 we

obtain
T < 1(X%.

But T is the time of pursuit corresponding to the assumed strategies
of pursuit and evasion, thus

(3.6) T(fo, f1) < 7(X°)
for each strategy of evasion f,eF,.
Let now the evader use a strategy fs and the pursuer any arbitrary

strategy f, ¢ F,. Let us denote by X () = (@, (2), 2, (2), a:o(t),wl(t)) <t<T)
the solution of the system of differential equatlons

o =f:(X)7 "il = f1(X)
with initial conditions (2.1). Like in the former case we use the assump-

tion 2° of the Lemma and construct a sequence of functions Xx* (t) uni-

formly convergent to X (?) in an arbitrary subinterval 0 <t <t of the
interval 0 <t < T, and satisfying the condition

(X)) —7(X°) > —
Hence, for 0 <t < T we obtain
(X% —7(X (1) <.

Clearly, in this case the time of pursuit cannot be finite. If T < + oo,
then from the definition of the evasion and pursuit strategies follows
that

lim 7(X(8) = 0,

t->T-0
hence

(X% < T.

If T = + oo, then the above inequality is obvious. But T is the pursuit
time corresponding to the assumed strategies of pursuit and evasion,
thus

(3.7) 7(X°) < T(fs, f))
for an arbitrary strategy f,eF,.
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The inequalities (3.6) and (3.7) tell us that the pursuit game (¥,
F,, T) is determined, 7(X°) is the value of the game (optimal pursuit
time), and f;,fi are optimal strategies of evasion and pursuit, respec-
tively [6].

4. Let us now construct the function 7(X) and the domain Q sati-
sfying all properties mentioned in section 2. At the same time we shall
define some new notions used in the sequel.

Let at the initial moment ¢ = 0 the positions and velocities of both
the evader and pursuer be equal to x; and 4;(i = 0, 1), respectively.
Let is denote by K (w;, 2;; a;, t) a closed ball lying in the space FE, with
the centre at the point x;+ ;¢ and radius equal to }a;t2:

(4.1) K (2;y @5 a;y 1) = {weBy: |0— (0,4 2:t)| < Fa;t2}.

Let us denote by J the set of moments ¢ > 0, for which the ball
K (%, &,; a;,t) contains a ball K (x,, Zy; ag, 1), i.e. '

T = {t = 0: K(x,, &y; a9, t) S K (21, Zy; 04, 1)}.

The set J is non-empty due to (2.5) and being closed it contains the
smallest element. Let v be this element. The moment z is uniquely deter-
mined by the initial positions and velocities of the evader and pursuer,
ie. v = 1(X) = (@, Ty, Loy &y).

From the definition of v(X) it follows immediately that this function
is the smallest non-negative solution of the equation

(4.2) [($1—w0)+(d/'1““i70)7]2—%(a1_ao)2 = 0.

From the form of this equation it follows that such a solution exists for
arbitrary (z,, z,, Z,, 2,) being equal to zero if and only if x,—z, = 0.

The continuity of the function 7(X) i8 very essential in our consi-
derations. The domain {2 of the phase space in which our problem will
be considered must be chosen so as to fulfil this condition. We should
be able to determine directly this domain where the function v(X) is
continuous if we could determine effectively the solution of the equa-
tion (4.2), as for example for » = 1 (we are, however, mainly interested
in cases where n > 2). The simplest way case when the required condition
is satisfied will be this if we confine ourselves to the set 2 of such points
of phase space that

(4.3) 2 [(@,— @) + (@, — ) T(X) 1 (&, — &) — (@1 — @)’ T° (X) # 0,

i.e. to the points in which v(X) is a onefold solution of the equation (4.2).
In this wuy we have excluded the points in which z, = ;.
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Thus due to the choice of the set Q2 the function 7(X) is continuous
and positive in £2. Moreover, if (wo(t),wl(t),:bo(t),a'zl(t)) 0<t<?T) is
an arbitrary trajectory lying within the set £ and such that

lim T(wo(t)a @, (1), Z(1), -’i’1(t)) =0,

t>T—0

then from the form of the equation (4.2) it follows immediately that
lim [, (f)—@,(¢)] = 0.
tsT—0

Thus in  the function v(X) has all properties required in section 2.
We shall show now that the set £ is a domain of a 4n-dimensional
phase space.
The function z(X) for X Q2 is defined by (4.2) and by the condition

1
(4.4) [(wl—%)-i-(ﬂl”r—iﬁo)tf—z (01— a)"t" >0

for 0 <t < ©(X). If for a fixed point X 2 we denote by 7 the function = (X)
and by F(t) the left-hand side of the inequality (4.4) then because of (4.2)
we have

F(z)—F(t)

T—1

F(z)

for 0 <t < 7, whence we obtain — 0

F
of (4.3) i_(rl # 0. The condition (4.3) is thus equivalent to the condition
dt

<0

< 0. But Xef2, thus by virtue

(4.5) 2 [(@y— @) + (@1 — @) 7] (1 — o) — (01— o) T° < 0.

We shall transform the relation (4.4) by introducing instead of the
variable ¢ a dimensionless parameter 6:

t=1(1—0), (0<6<1).
Then (4.4) will tal@®-the form

1
(4.6) [(@y— &) + (61— &) (1 — 6) 7" — 7 (a— a)*(1—0)*7* >0

for 0 < 0 <1. The set 2 can be now defined as the set of all points
(%o, 2y, &y, &,) of the phase space, such that they all satisfy the condi-
tions (4.2), (4.6) and (4.5).

Let us map the set £ onto the set 2, of a 2n-dimensional space by
means of the linear transformation

(4.7) 2 =@, —Ty, 2= &y—Lp.



112 B. Florkiewicz

The set 2, is defined by the conditions

(4.8) (40— ¢ (—agfe* = 0
(4.9) [2+ér(1— 0)]2—% (a3— ag)?7* (1— 0)* > 0

for 0 < 6 <1, and
(4.10) 2(z441)8— (a,— ap)*7° < 0.

If the set £, is a domain of a 2n-dimensional space of variables (z, 2),
then, due to (4.7), the set £ will be also the domain of a 4n-dimensional
space of variables (z,, ®,, &y, &,).

Let us transform now the set £, into the set 2, by means of the
transformation

(4.11) U = (2+27), v=

a;— dg ay—ay
where 7 = 7(2,2) i8 'a function continuous and positive for (z,2)ef2,,
satisfying (4.8), (4.9) and (4.10). This transformation is continuous. In
virtue of (4.8) and (4.11) we have

T = (u2)1/4

where 42 > 0 for (u,v)ef2,. It follows from the above inequality that
the transformation
ay

(u—p), & =-2_0 (%) Uy,

(4.12) v = 5

18 an inverse transformation of (4.11), and its form shows that this tran-
sformation is continuous. Thus the transformation (4.11) is a home-
omorphism. Pe

In order to show that the set 2 is a domain it suffices to state, due
to preceding considerations, that the set 2, is a domain. The set 2, is
defined by conditions

[1—(1—0)*]u*—20ur}-6*v* >0 (0 <6<1),
uv—2u? < 0.

Those conditions are equivalent to the inequality

(4u2—2uv)+ (V32— 6u2) 04 u202(4—0) > 0
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for 0 < 6 <1, and since the left-hand side of this inequality is a con-
tinuous function of the variable 6, then the inequality is equivalent to
the condition

(4.13) n:in {(4u%— 2uv) 4 (v2— 6u2) 0+ u26%(4— 0)} > 0.
0<<o<1

Consequently, if a point (u,, v,) belongs to the set 2,, then a neighbour-
hood of this point belongs to this set too, as the left-hand side of the
inequality (4.13) is a continuous function of the variables (u, v). Thus 2,
is an open set. We are to show that 2, is connected.

If (u,v)eQ, then from (4.13) it follows that (xu, xv)e2,, where x
is an arbitrary real number different from zero. To this end we shall
transform the set 2, into the set £, by means of the formulae

(4.14) %= (u?) u, 7= (u) V.
Then the set 2, is defined by the condition
(4.15) min {(4—2u%)} (92— 6) 04 02(4—0)} > 0

0<<0L1
since %2 = 1. From (4.15) it follows that the set £, has been characterized
by two scalar parameters #v and v2. Let us map the set 2, into the set 2,
of a two-dimensional space, by means of the transformation

(4.16) A =aw, u=0k

Then, by virtue of (4.15) and (4.16), the set 2, is defined by the condi-
tion
(4.17) min {(4—24)+(g—6)0+4 02(4— 06)} > 0.
0<6<1

We shall show now that the set 2, is connected whence, because
of (4.16) and (4.14), it follows that the set £, is connected.

Let (2,, #,) and (4,, u,) be arbitrary points belonging to the set £,,
and let u; be any arbitrary number greater than max(y,, g, 6). Then,
from (4.17) it follows immediately that the broken line

A for 0<s<1,
A={(A—4)8+24,—24, for 1<s<2,
Ao for 2 <s8<3,

(63— 1)+ pq for 0 <s<1,

w = s for 1<s<2,
(po— p3)8+3us—2u, Tfor 2 <s<3

Zastosowania Matematyki, tom X 8



connecting the points (4,, #,) and (4,, ;) lies within 2,. Thus 2, is
a connected set. '

In this way we have shown that the set 2, is a domain, and at the
same time that the set £ is a domain.

Let us introduce now certain new notations and notions which will
be used in the sequel. The balls K(x;, 2;; @, 7) (¢ = 0, 1), defined by
the formula (4.1) and corresponding to the moment v = 7(X) will be
denoted by K;; their centres by s;, where s; = 8;(X). A point of the ball
K, that lies on the boundary of the ball K, will be called Apollonian
point. It is a function of a point of the phase space and will be denoted
by a = a(X).

5. Now we shall define and examine a fixed trajectory lying within
the domain 2, which will serve us to define certain strategies of evasion
and pursuit.

Let X° = (3, 23, 43, 4}) be a fixed point of the phase space belong-
ing to the domain 2, and let z° = ¢(X°). Then the balls K, and K,
defined in section 4 will be of the form

K, = {weBy,: [a— (094 337")| < $apt®},

K, = {wely,: o — (214 417°)| < }a,7"}

hence
8o = 8(X") = ag+ g7’
(5.1) 80 = 8,(X°) = ol i,
. a
@ = a(X%) = — 2 (@) + H7") — —2— (2 + 87,
: ay— 0 a;—
and
(5.2) la°— sl = $ap7™,  |a’—s]| = $a,7™,
Consider the following trajectories
(1] 0 0 0
. a’ —s . a —8] .
@y (1) = B9+ Byt Yap-—5—o-12,  #F(1) = AN+ aNt Lo, ——o- 12,
|a” — 8| (@ — 8| _
(5.3)
o 0 0 0
% .0 a — 8 .k .0 a — 8
Zo (1) = Tp+ag———F— ¢ () =2,+a—r—
0( ) 0+ 0 Iao_sg' ’ 1( ) 1+ 1 |a°—s‘,’|

defined for 0 <t < °. From the definition of the trajectories (5.3) we
immediately obtain that

a;:(O) = wg, mf(o) = 517(1), él';:(()) = $.37 a",lk(o) = .’132
and due to (5.1) and (5.2)

zy (1°) = 25 (2°) = o’
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It will be proved later that along the trajectories (5.3) we have
(5.4) (w5 (1), @1 (1), @5 (2), 41 (1)) = =" —1.
Hence, by simple calculations we get

alay (1), 21 (2), 44 (1), % (1)) = o
and

a(X* (1)) —s(X*(1)  a’—sp

la(X* () —o(X* ()] 1a®—si|

and
a(X* (1) —s,(X7()  a'—#
la(X* (@) —so(X* (1)) 1a®—s}]’

where X*(t) = (7 (t), @1 (1), @3 (t), 41 (t)). Similarly we get from (5.4)
2 (w1 (8) — @3 (&) + (@1 (8) — &g (0) = (X* ()] (4T () — 5 () — (@1 — @0)® X

0 4\2
X 7 (X* (1) = {2[(#h— o) + (43— ) ] (42— 8) — (o — )"} ( — t) :

whence, by virtue of the definition of the domain £, it follows that if
the initial point lies within the domain 2 then the trajectory (5.3) lies
within this domain for 0 <t < 7°.

Proof of (5.4): By definition, (a5 (t), 47 (), 4 (¢), €} (1)) is the smal-
lest positive root of the equation

(% (8) — a7 (1)) + (7 (8) — &5 (1)) o]*— % (ay— ap)?7* = 0.

By a direct checking we state that ° —¢ is a Toot of this e_qua,tion. We
are to show that this equation has no smaller root. To this end we shall
examine the function

(5.5) D(t, 7) = [¢F(t)+&*(t)r]2— —1— a2t

for t >0, v >0 and t+7 <% where in accordance with (5.1), (5.2)
and (5.3)

TO

;;t [zoto_*_(z-o_}_z-oto)t],
T

2(t) = (t)—ap(t) =

(5.6) L
& (1) = @y () —dap (1) = W[é°r°—2(z°+é°r°>t],

and, moreover, &° = #{— ), £ = 41—4; and « = a;— a,. From the form
of the function @ (¢, v) as well as from the former considerations it follows
immediately that

(6.7) &, "—t) =0 for 0t
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and

d(t,0)>0 for 0<ti<
(5.8)

&(0,7) >0 for O0<r<
To prove (5.4) it suffices therefore to show that ®(¢,r) > 0 for ¢ > 0,
7 >0 and t4 7 < 7°. This will be proved by showing that if the deri-
vative of the function @D(f,r) along the straight line ¢+ v = const
vanishes in an interior point of the domain ¢ >0, v > 0, t-+7 < ° then
the function (¢, 7) is positive in this point.

Let us consider the expression @(t, r)—P,(t,7) for t >0, v >0,

t+ 7 < % Using (5.5) we obtain

(5.9) Dy(t, 7)— D, (t, 7) = r[a®12+ 28" (1)2" (1) v+ 2™ (1) 2* (¢)].
It follows from (5.7) that
(5.10) By(t, °—1)—D,(t, I°—1) = 0

for 0 <t < 7°. t being fixed the expression (5.9) is a polynomial of the
variable r. From (5.10) it follows that
Tl == 'Eo-—-t
is a root of this polynomial. Hence,
22 (1)2* (¢
T, = —7 11— _z.LZ:_()
a

is also the root of this polynomial.
By using (5.6) and performing some simple transformations we
obtain

20,(0, ©°)
T = Pt S
Hence
0
(5.11) By(t, 7)—Be(t, 7) = azr[r—ﬁ"—t”[’_ (’°_t+ E’EM)]
a“t

for t >0, >0, and t4+7 <"
Now, we shall define the function @(t,y—1) for 0 <¢ <y where
0<y < 7°. We have

d
E D(t, y—1t) = Dy(t, y—1t)— D, (1, y—1)

and because of (5.11)
( o 20:(0, To) )

y—v — 202

d
— B, y—1) = a*(y—1)(y—7")
a’t

at
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whence, by integration we obtain

0 o 29.(0,7"
(5.12) D(t,y—1t) = —a®(y—8)*(y—7 )(y—f — ——;;Tv—) +2(y,0)
for 0 <t <y.

Suppose now that for same point (f,t), where ¢t >0, v >0 and
t+7 < 7° the function @(¢, r) assumes a non-positive value. Then from
(5.7) and (5.8) and from the continuity of this function it follows that
at a point (¢,7), where £ >0, T >0 and i+ 7 < 7%, ®(¢, ) attains its
minimum value which is non-positive,

(5.13) o, 7) <O0.
By virtue of (5.11) we have

a”?(i—{—%—ro)(i—l- T—1"— o =0

20,(0, 7°) )
whence
29,(0, 7°)

2_02
aro

i+7—1"— =0.

From (5.12) with y =47 and ¢ = { and from (5.8) we obtain
b(,7) =D(E+7,0)>0
which contradiets (5.13). This ends the proof of (5.4).

6. We shall now define some strategies of pursuit and evasion. Let
us consider the following system of differential equations

5 _ SE)—s(X) 5 _ OE)—n(X)
"T @ =@ T le@—s@

subject to the initial conditions

X(0) = X"

From the considerations contained in section 5 it follows that the fune-
tions g () and z}(t) defined by (5.3) form a solution of this system sati-
sfying the initial conditions formulated above and which for 0 <t < 7°
belongs to the domain 2 and for which

Bm v(af(t), 2 (), 4 (1), 45 (8) = 0.
t0_o

Hence, the functions

a(X)— 8 (X)

X)—s, (X
a(X)—5o(X)] e

a(X)— s, (X)]

(6.1) fo(X) = (X)) =

are the strategies of pursuit and evasion in the domain £.
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If the pursuer and evader use the strategies (6.1) then during the
pursuit the vectors of accelerations are constant and their value is maxi-
mum. The time of pursuit is then equal to 7° and the capture takes place
in a°. In the course of pursuit the actual Apollonian point a(X) coincides
with the initial Apollonian point a’.

7. We shall show now that the pursuit of one evader by one pursuer
is a determined game in the domain 2.

Let <(F,,F,,T> be a pursuit game which has been discussed in
section 2, and let the functions f; (X) and f; (X), defined in the former
section, belong to the sets F, and F',, respectively. The sets ¥, and F,
contain also some other strategies. Let for instance, X2, and X, be ar-
bitrary closed regions of a phase space which are contained in the do-
main . Let the functions fo(X) and f,(X) be continuous in 2, and let
fo(X) be in X, an arbitrary function with continuous first order deri-
vatives and such that |f,(X)| < a,, and moreover, f,(X) = fs(X) in
ON\24; f1(X) is an arbitrary function with continuous first-order deri-
vatives in X, and such that [f,(X)| < e,, moreover, f,(X) = fi (X) in
O\ ZX,. The functions f,(X) and f,(X) thus defined are strategies.

The folowing theorem holds:

THEOREM. A pursuit game (Fo, F,,T) is a determined game for
which fy is the optimal strategy of evasion, f is the optimal strategy of pur-
suit, and v(X") is the optimal time of pursuit.

Proof. To prove our theorem we apply the Lemma formulated
and proved in section 3. We begin with defining an auxiliary function
-¢(X). We do it as follows:

Let ¢, (X) be a positive and continuous function in the domain 2,
such that for every X 2 and for arbitrary f, and f,, where |f,| < a, and
Ifil < a;, and for every number 0 < § < & (X) the point (x,+ @, 64 3 f, 62,
®1+ @, 6+ 3, 6%, &+ fo 0, #,+f, 0) belongs to the domain £. Such a func-
tion exists because 2 is open. Let ,(X) be an upper bound of the num-
‘bers ¢ such that

[(®y— @) + (&1, — &4) 6] > ¥(ap+ a,) 62

holds for every 0 < é < ¢ and X ef2. The function &,(X) is continuous
in the domain Q. Let now

Vo, |
VaotVar b

The function &(X) is defined in the domain £ and is continuous and
positive there.

(7.1) e(X) = mm{el(X), &s(X)y ———~ (X)}
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To prove the theorem we shall show that the inequalities (3.2) and
(3.4) hold, f; and f; being determined by (6.1) and ¢ an arbitrary number
satisfying the condition 0 < é < ¢(X).

Proof of (3.2). Fix a point X2 and let f,(X)eF,. For the sake
of brevity the argument X of the considered functions will be omitted,
and the values of those functions in the point

(@o+ @50+ %f062’ w1+‘1‘716+%f1* 62; Zo+Jo0, ~’i>1+ff d)

belonging to 2 will be denoted by adding an upper index 4, when 0 <
< &. We are to prove that if 0 < 6 < ¢, then

? <r—06.
By virtue of the definition of 7 it sufficies to show that
(7.2) K c K3,
where
K3 = K (@+ & 8+ 3fo 0% do-1-fo 85 @, — 9),
K} = K (046,04 41 8", b1+ £1 65 o, 7— 0).

Let us introduce in the space E, a rectangular system of coordinates
(&', &, ..., £") assuming the centre s, of the ball K, to lie at the origin
of this system, and the axis £! be directed toward the centre s, of the
ball K,. Then

8 = (3(a;—a9)7%4 0,...,0), 8 =(0,0,...,0),
and because of (6.1)

fi' = (au 0,...,0).

Let us denote by (cosg,, cos@,, ..., cOS@,) the direction cosines of the
vector f, and let |f,] = f,. Then

Jo = (BoCOBPy,y BoCOSPs, ..., BrCOBPR).
Due to (5.1) we obtain

33 = (%(al—ao) Tz+(76—%52).30003‘?1’
(7.3) (78— 36%) 08y, ..., (TE—} 62) By COSP,)
3‘; = ((té—%éz)al, 0,...,0),

where s # s}, which results from the definition of . The relation (7.2)
i8 equivalent to the inequality

(7.4) |3‘1,—'33| < %(al—ao)("_é)z-



Let us consider now the expression |s3—s5|. From (7 .3) we have
[8':— SSI = {[3(a;—a)(z— 6)2“ (vd— %62) (ap— ﬂocos¢1)]2+
+[(v0—3% 62).30003‘772]2‘{‘- o t-[(rd—13 52) ﬂocosq’n]z}llz-

Since d < ¢, then because of (7.1) we have

Va,
) < —== — T
'/ao '/al ’
thus the expression |s]—sj| attains for ¢, =0, ¢, = ... = ¢, = =2 its
maximum value equal to

$(ay— a) (1 — 6)*— (ag— Bo) (v0— £ 0%).
Hence, we immediately obtain (7.4), since B, < a, and 0 < 7.

Proof of the inequality (3.4): Let again Xef2 and f,eF,. We in-
troduce notations similar to those given above. Thus we have to show
that, if 0 < 0 < ¢, then

2>1—96
where the index & denotes the value at the point
(Bo+ @60+ 315 6% w1+ 2,0+ 3f. 6% ‘i’o+f:67 &y +f16)

belonging to the domain £. To do this it suffices to show that there
exists at least one point of the ball

K; = K(wo+fbob+%f:62’ o+ fo 65 agy T— 6)
lying outside or on the boundary of the ball
K} = K (2,4 8,0+ 3f, 0% #,+ 1, 6; ay, 7— 9).

The Apollonian point is just such a point. From the definition it lies
on the boundary of the balls K, and K,, and because of (6.1) it lies also
on the boundary of the ball K. In order to show that it does not lie
inside the ball K¢ we shall show that

K c K,.
Let weKj}, ie.,
lo— 83| < $ay(r— 6)%
Then we have -
|x— 8| < |w—8;—f1 (76— % 0%) [+ [f1(T0— % 6%)]
and since 8,+f,(v6—16%) = s} and 6 <7 and |f;] < a;, then
[£— 81| < $ay(v—0)*+ [fil(v6— 3% < }a,7%

whence it follows that x<K,. In this way we have proved the inequality
(3.4) which finishes the proof of our theorem.
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