TERESA LEDWINA (Wrocław)

ON THE ADMISSIBILITY OF TESTS FOR EXTENDED HYPOTHESES OF FIT

1. Introduction. We are concerned with a multinomial distribution with, say, k classes and with the hypothesis that the point $p = (p_1, \ldots, p_k)$, where p_i is the probability of the i-th class, ranges over some set U_q .

The hypothesis of fit for a fixed distribution, say F, is usually formulated as

$$H_0: p = q,$$

where $q=(q_1,\ldots,q_k)$ and q_1,\ldots,q_k are generated by F. But in a large sample this hypothesis is nearly always rejected, since no natural population has ever the exact distribution F. In fact, we would want to reject H_0 only when the departure of the real distribution from F were great. Consequently, Hodges and Lehmann [3] have proposed to test instead of H_0 the hypothesis

$$H^*: d(p,q) \leqslant c^*,$$

where d(p,q) is a measure of distance.

We are concerned with the problem of testing $H: p \in U_q$ against $K: p \notin U_q$, where U_q is a neighbourhood of q having the property: $p \in U_q$ implies $p_i > c > 0$ for i = 1, ..., k.

For the simplest case of testing H_0 , Birnbaum [1] has proved that every test with convex acceptance region is admissible. We extend this result to the case of testing H against K.

The usage of customary tests of fit for testing H depends on the possibility of control of the level of significance. An example of such an extended hypothesis is given in Section 4.

2. Notation. Let $X=(X_1,\ldots,X_k)$ stand for a multinomially distributed random vector (with parameters n and $p=(p_1,\ldots,p_k)$), where X_i take non-negative integral values and

$$n=\sum_{i=1}^k X_i.$$

Let \mathcal{X} denote the set of values of X. For every $x \in \mathcal{X}$ we have

$$P(X_1 = x_1, ..., X_k = x_k) = l_n(x) \prod_{i=1}^k p_i^{x_i},$$

where

$$l_n(x) = n! \left(\prod_{i=1}^k x_i! \right)^{-1}.$$

Throughout this paper we assume that $p_i > 0$ for i = 1, ..., k and use the notation W_n for such a multinomial distribution.

Finally, let us note that a subset of \mathcal{X} is called *convex* if it is a common part of \mathcal{X} and of a convex set in \mathbb{R}^k . We say that x is an *extremal point* of the subset A of \mathcal{X} if x is an extremal point of the convex hull of A.

3. Admissibility of tests with convex acceptance regions.

THEOREM. Let φ be a test of $H: p \in U_q$ against the unrestricted alternative $K: p \notin U_q$, where each $p_i > c > 0$ for every $p \in U_q$. If the acceptance region of φ is convex and randomization is done at most at the extremal points of this region, then φ is admissible.

Proof. Let us suppose to the contrary that φ satisfies the assumptions of the theorem and that there exists a test ψ better than φ . So we have

(1)
$$\sum_{x \in \mathcal{I}} (\psi(x) - \varphi(x)) W_p(x) \leqslant 0 \quad \text{for } p \in U_q,$$

(2)
$$\sum_{x \in \mathcal{T}} (\psi(x) - \varphi(x)) W_p(x) \ge 0 \quad \text{for } p \notin U_q$$

and at least one of these inequalities is sharp for some p.

Now we can write $W_n(x)$ in the form

$$W_p(x) = l_n(x) \left(1 + \sum_{i=1}^{k-1} \exp\left\{\theta_i\right\}\right)^{-n} \exp\left\{\sum_{i=1}^{k-1} \theta_i x_i\right\},$$

where

$$heta_i = \ln rac{p_i}{p_k} \quad ext{ for } i = 1, ..., k-1.$$

Consequently, (2) implies

(3)
$$\sum_{x \in \mathcal{X}} l_n(x) (\psi(x) - \varphi(x)) \exp \left\{ \sum_{i=1}^{k-1} \theta_i x_i \right\} \geqslant 0 \quad \text{for } p \notin U_q.$$

Moreover, from (1) and (2) it follows that there exists a point $x^0 \in \mathcal{X}$ such that $\varphi(x^0) > \psi(x^0)$.

Now, let us denote by A the acceptance region of φ . Then

$$A = \{x \in \mathcal{X}: \varphi(x) < 1\}$$

and by the conditions imposed on φ we see that $x^0 \notin A$ or x^0 is an extremal point of A. In both cases there exists a vector $\alpha \neq 0$, having not all components equal, such that

$$\langle a, x-x^0 \rangle < 0$$
 for $x \in A, x \neq x^0$,

where $\langle \cdot, \cdot \rangle$ denotes the standard inner product on \mathbb{R}^k . Moreover, in view of the equalities

$$\sum_{i=1}^k x_i = \sum_{i=1}^k x_i^0 = n$$

the vector $a^* = (a_1 - a_k, \ldots, a_{k-1} - a_k, 0)$ has the property

$$\langle a^*, x-x^0 \rangle = \langle a, x-x^0 \rangle.$$

Since the vector $\theta = (\theta_1, ..., \theta_{k-1})$ ranges over \mathbb{R}^{k-1} , we can put $\theta_i = Na_i^*$ for i = 1, ..., k-1, where N is a natural number.

Now we show that there exists a subsequence of $\{(Na_1^*, \ldots, Na_{k-1}^*)\}$ such that the solutions

$$p(N) = (p_1(N), \ldots, p_k(N))$$

of $Na_i^* = \ln p_i - \ln p_k$ (i = 1, ..., k-1) belong to the alternative K.

Let now $\theta_i^0 = \ln q_i - \ln q_k$ (i = 1, ..., k-1). The condition imposed on U_q guarantees that

$$\sum_{i=1}^{k-1} (\theta_i - \theta_i^0)^2 = \sum_{i=1}^{k-1} \left(\ln \frac{p_i q_k}{p_k q_i} \right)^2 < C$$

for some C and every $p \in U_q$. Thus, for every sequence of numbers, say $\{d_j\}$, tending to infinity and such that $C < d_1 < d_2 < \ldots$, the solutions of

$$\sum_{i=1}^{k-1}(\theta_i-\theta_i^0)^2=d_j$$

lead to p's which belong to K. So for a sufficiently large N the vectors $(Na_1^*, \ldots, Na_{k-1}^*)$ belong to K and

$$N\langle a^*, x-x^0\rangle < 0$$
 for $x \in A \setminus \{x_0\}$.

Multiplying now both sides of (3) by $\exp\{-N\langle a^*, x^0\rangle\}$ we obtain (4)

$$\sum_{x \in \mathcal{X} \backslash \{x^0\}} l_n(x) \left(\psi(x) - \varphi(x) \right) \exp \left\{ N \left\langle a^*, \, x - x^0 \right\rangle \right\} + l_n(x^0) \left(\psi(x^0) - \varphi(x^0) \right) \geqslant 0 \,.$$

Since for $x \in A$ we have $\varphi(x) = 1$ and, consequently, $\psi(x) - \varphi(x) \leq 0$, inequality (4) implies

(5)

$$\sum_{x\in A \diagdown \{x^0\}} l_n(x) \left(\psi(x) - \varphi(x) \right) \exp \left\{ N \left\langle a^*, \, x - x^0 \right\rangle \right\} + l_n(x^0) \left(\psi(x^0) - \varphi(x^0) \right) \geqslant 0 \,.$$

70 T. Ledwina

Thus letting $N \to +\infty$ in (5) we obtain

$$\psi(x^0)-\varphi(x^0)\geqslant 0$$
,

which contradicts $\varphi(x^0) > \psi(x^0)$ and the proof is completed.

4. Applications. The acceptance regions based on the χ^2 -statistics

$$\sum_{i=1}^k \frac{(x_i - nq_i)^2}{nq_i}$$

and on the likelihood ratio

$$2\sum x_i \ln\left(\frac{x_i}{nq_i}\right)$$

are convex and, therefore, are admissible for testing the hypothesis of fit $H_0: p = q$ and the extended hypothesis $H: p \in U_q$.

However, the usage of those tests for testing H depends on the possibility of control of the level of significance. We show that this can be done for

$$U_q = \{p : |p_i - q_i| \leqslant \epsilon\}, \quad \text{where } \epsilon < \min(q_1, ..., q_k).$$

Since $W_p(x)$ is a continuous function of p for every fixed x, we infer that for every $\varepsilon_1 > 0$ $(\alpha > \varepsilon_1)$ there exists an $\varepsilon > 0$ such that

$$\Big|\sum_{x\in A}W_p(x)-\sum_{x\in A}W_q(x)\Big|\leqslant arepsilon_1 \quad ext{ for all } A\in 2^{\mathscr{X}} ext{ and } p\in U_q.$$

For such ε_1 and ε we have

$$\sum_{x\in \mathcal{A}} W_p(x) \leqslant \sum_{x\in \mathcal{A}} W_q(x) + \varepsilon_1 \quad \text{ for } p \in U_q.$$

Consequently, every test of level $a - \varepsilon_1$ for testing H_0 is that of level a for H.

Remark. As we mentioned in Section 1, Hodges and Lehmann [3] considered the following extended hypothesis of fit:

$$H^*: d(p,q) \leqslant c^*$$
.

They proposed to test H^* with nice asymptotic properties. Their result was generalized by Bjørnstad [2].

After investigating those test statistics one can see, however, that they are not convex functions of x for the distances d of the form

$$d(p,q) = \sum_{i=1}^{k} s_i (p_i - q_i)^2,$$

where the weights s_i can be functions of p and q. So the examination of admissibility of those tests by our theorem is rather difficult.

References

- [1] A. Birnbaum, Characterizations of complete classes of tests of some multiparametric hypotheses with applications to likelihood ratio tests, Ann. Math. Statist. 26 (1955), p. 21-36.
- [2] J. F. Bjørnstad, Inference theory in contingency tables, Statistical Research Report No. 2, University of Oslo, 1975.
- [3] J. L. Hodges, Jr., and E. Lehmann, Testing of approximate validity of statistical hypotheses, J. R. Statist. Soc., B, 16 (1954), p. 261-268.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY WROCŁAW 50-370 WROCŁAW

Received on 30. 11. 1977

TERESA LEDWINA (Wroclaw)

O DOPUSZCZALNOŚCI TESTÓW DLA ROZSZERZONEJ HIPOTEZY ZGODNOŚCI

STRESZCZENIE

W pracy rozważa się problem testowania rozszerzonej hipotezy zgodności. Udowodniono, że testy o wypukłych obszarach przyjęć są dopuszczalne.