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HYPERBOLIC SPLINES
WITH GIVEN DERIVATIVES AT THE KNOTS

Let v be a hyperbolic spline function with knotsz; (0 = 2, < 2, < ...
<&, = 1). In this paper, theorems on the existence and uniqueness of the
Solution of certain interpolation problems are given. We assume that
the interpolant z has the first or second derivative at the knots
(t =0, 1,...,n) and satisfies the appropriate boundary conditions. The
upper bounds for the error ||f* —<®|| (k =0,1,2,3) are given, where
fecC*10,1] or feC[0,1].

1. Imtroduction. Let 4, = {0 =2, < #; < ... < 2, =1} be an arbitrary
{(but fixed) partition of the interval [0,1]. Further, let a = {a, >0},
be a set of tension parameters. By Sph(4,,a) we denote a space
of hyperbolic splines in tension with the above knots z; and tension
barameters o,, i.e. 7 €Sph(4,, ) if and only if

(i) in each interval [z;_,, ;] (¢ =1,2,...,n), v(z) is a linear com-
bination of the functions 1,, sinh(a;z), and cosh(ax);

(i) v e C?[0,1].

For simplicity of notation, let h, =2;,—x;_, (1 =1,2,...,n), ¥,
=), m; =<' (x), M, =7"(x,) (1 =0,1,...,n).

. This paper is concerned with some questions of the existence and
Uniqueness of a solution of certain interpolation problems in the space
Sph(dn, a). The first one is formulated as follows: does there exist
T €8ph(4,, a) such that

(1.1)
With boundary conditions

(1.2)
or

(1.3)

T(Zo) = Yoy T(X,) =Y,

T (@) = Mo, T(2,) = M

n?
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or initial conditions
(1.4) (%) = Yo (L) = Y1,

where m;, Yo, Y1, Ypy Mo, M, are given real numbers.
The second interpolation scheme is of the form

(1.5) (@) =M, (£=0,1,...,n)

with the boundary conditions

(1.6) T(®o) = Yo, T(X) =,
or

(1.7) (@) = Moy, T (4,) = My,
or

(1.8) T(®o) = Yoy  T(X1) = Y1y
or

(1.9) T(®o) = Yoy T (@) = My,

where, as above, M,, ¥,, Y1, Y,,, Mo, M,, are given real numbers.

The results of this paper are in some sense a generalization of the
results due to Neuman [3], [4], and Carlson and Hall [1]. In those papers,
the authors consider analogous interpolation problems but in the space
of cubic splines. Namely, if a,—0, then our results are the same as in
[3], [4], and [1]. In Section 2, some conditions which guarantee the exist-
ence and, in some cases, also the uniqueness of a solution of the above
interpolation problems are given. In Section 3, upper bounds for the
error ||f® —z®) (k = 0,1, 2, 3) aré presented, where ||-|| stands for the
max-norm over the interval [0, 1].

2. The existence and uniqueness theorems. We begin this section
with some elementary facts concerning tridiagonal matrices 4, = ()
(2,3 =1,2,...,n), where

b,

2

fai (1t =2,3,...,03 ©>]),
1 =1,2,...,m; %2 =1
(2.1) Fy = ( 3Ly eeey M5 ..7)’ .
101. (2 =1,2,...,n—1; 2 <}),
0 (i—jl>1;4,§=1,2,...,n).

If d, denotes the k-th main minor of 4,, then it is well known that

(2.2) & =bdp—apoadi, (B =2,3,...,n; dyp =1,d, = by).
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This recurrence formula will be used in the proofs of theorems given.
below.

Let B, = (gq4) (4,5 =1,2,...,n) be an inverse matrix to 4, (we
assume that B, exists). If all maln minors d,, (k =1,2,...,n) of 4, are-
different from zero, then from formulae (3.3)-(3.4) or (3.7 ) in [2] it follows.
that
d

T—1

(2.3) €y = (1"

aq ((j=1,2,...,n).

R ft ES
We now consider the interpolation problem (1.1), (1.2). Let y; = (x;)-
and m; = v'(x;) (¢ =0,1,...,n). Then the hyperbolic spline z(x) for-
Z € [x;_,, x;] may be written in the form
(2.4) T(®) = Y Fy(h;— 1) + 4, F;(t) +m;_, G, (h; — 1) —m;Gy (1),
Where

t=0c—w,_,, F,(1) = _;:_(t+ o;(b;—1) — 0;(1) )’

U;(O) + Ué(hi)

;(0) 0;(h; — 1) + 0;(h;) 0, (2) 1 ( sinh (a,?) 4 )
07 (0) — 0" (hy), ' o \sinh(a;h;)  h
The continuity of " () at the knots x; (i = 1,2,...,n—1) implies the-
Consistency relations
h B,

h. h. ,
(2.6 — Ml ey, e — s )y ——s
) hi Slyi—l hi ) hi+1 i+1 J'l_'— hi_*_l

i+1Yi41
= By tymy g+ (1 8,0, Byt 10 ) Mg 1 Byt omy
(i=1,2,...,n—1)
(see [6], equation (1.15)), where

(2.7) s — 1o, o —ak) L Bhi(0)
S U 11 I T () el

The matrix 4,_, of the linear system (2.6) with unknowns ¥,, ¥, ...
3y Yn_y (Yo, ¥y, are given) is tridiagonal. By (2.2) we have
by hy

do=1, dy = TR WL
1 2
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We can prove by induction that

k+1
(=1 ] 8; k+1 h3
d, = =1 (-1 =~ (k =0,1,...,2—1).
byl y o 8;

Hence d,_, = det4,_, # 0 if and only if

- B
-1y — #0 . >0 for all j).
;( ) s, # (8; >0 for all j)

This proves the following
THEOREM 2.1. The interpolation problem (1.1), (1.2) has exactly one
solution if and only if

(2.8) 2(—1)]‘5 0.

S
=1 !

By (2.8) and from the fact that s; is a positive function in variables
k; and o;, we have immediately

COROLLARY 2.1. If the knots x; are equidistant and all tension par-
ameters are equal to one another, then the inlerpolation problem (1.1), (1.2)
has exactly one solution if and only if n is odd.

In the next theorem, the conditions which guarantee the existence
of a solution of the problem (1.1), (1.3) are given. These conditions depend
on the partition 4,, tension parameters ¢;, and also on the interpolated
values m; (j =0,1,...,n), My, M,.

THEOREM 2.2. The interpolation problem (1.1), (1.3) has a solution if

n

(2.9) 2(—1)7’&}?"‘—1@(@—1) — (—=1)"M,—M,.
j=1 !
The interpolant v is nonunique.

Proof. In this case we must add to the system (2.6) two equations
which follow from conditions (1.3). Thus we obtain the following system
of linear equations with unknowns vg, ¥y, ..., ¥,:

h
(2.10) —yo+u, =?1‘ (tav,mg+tymy + by M) —

1

it 55— ¥
by - by
= hyp1 tmy_y + (B 80+ Rty 0, 0)m Bty my

(i=1,2,..,n-1),

h;
A $it1¥ina
T+1

h;
- _7;1 8;Y;1+ (

(]

3i+1) Y+



Hyperbolic splines 323

—Yn—1 - Yo = ?n_ (tnmn—l - tn’vnmn - hnﬂlIn)'
The matrix A4,,, of this system is tridiagonal. We shall show that
detA,,, = 0andrankd, , = n. Let hy = h,/s;. By (2.2) we have d, = 1,
d, = —1, and

h hy._ hy oy,
(2.11) dy = ( hlc,il Sp—1— Ihkl Sk) A+ 'Lhi%slchdk—z
(k=2,3,...,m),
hn—l
(2.12) dpyi =+ —2"2s.d, ;.

h

n

We can prove by induction that the numbers d, satisfying (2.11) are
equal to
k

h
(2.13) d, = (—1)k-];;—1- ”sj k=1,2,...,m).
z j=1

From (2.12) and (2.13) we obtain

n n—1

h h,_ .k
Guoy = et dypy = (=17 = [ [ o+ =22, (-1t = [ [ 5 =0.

s h, ;s
nlj=1 n nllj=1

Consequently, by (2.13), we also have rank4,, , = n.

Let 4, be a submatrix formed with » first rows and » first columns
of the matrix 4,,,,. By (2.13) we have det.4, # 0. Hence, all main minors
of A are different from zero. We now put

'!/T = Yoy Y1y +++3 Yn—1)s oT = (P13 P2y eoey Pn)s
Where

h
P = 'S_l‘ (tyoymo+tymy+h M),

1
(2‘14) @ = hit_ymy_s+ (Bt Ry B0 my g+ Ry tmy
(t=2,3,...,n—1),
QU,L = h’ntn—lmn—‘.’ + (hntn——lvn—l + hn—ltn'vn) mn-—-l + hn—ltnmn -
h,_
- % $pYn-
n

We Dow consider the system A,y =¢. If ¢; (i,j =1,2,...,n) are
entries of the inverse matrix to the matrix A, , then from (2.3) it follows
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that
: 5 .
(2.18) q,; = (—1)"—’-1m (3 =1,2,...,m; hy = hy/s,y).
Hence
(2.16) Ynor = D, €ni ;-
j=1

Putting (2.14) and (2.15) into (2.16) we obtain

54 1
(2.17) —Yp-1+¥, = (=1)" . { T (b 03mo +tymy + By M) +-
n 1

o (—1)
+2 h;_,h; [hiti—lmj-z+(hjtf—l"’j—l+hj-1tj?7,-)’m-_1+hj_1t,.mj]}.
=2 I~

Comparing the right-hand side of (2.17) with the right-hand side of the
last equation in (2.10), we obtain finally (2.9).

The matrix of the system (2.6) with unknowns ¥,, ¥s, ...y ¥, (Yo, ¥1
are given) is lower triangular with entries (h;/l;,,)s;,; (¢=1,2,...,n—1)
on the main diagonal. Hence we obtain

THEOREM 2.3. The interpolation problem (1.1), (1.4) has exactly one
solution.

Now we consider the interpolation scheme (1.5) with conditions
(1.6)-(1.9). Let M, =7""(x;) (¢ =0,1,...,n). In each interval [z,_,, ;]
the funection 7z(z) from Sph(4,, a) can be written in the form

h,—1
(218)  w(@) =gy

(]

t
+Y; & +M;_,0;,(b;—1)+M;0,(t),

where ¢ and o;(f) are the same as in (2.5). By the continuity of +’'(x) at
the points z; we obtain the following system of equations:

(2.19) Bipor1Yioy — (b +hy )Y+ Y
= hihi+1 { —M;_, 0';(0) + [0';-(7?,,-) =+ 0':'+1 (hi+ V1M, '_Mi+1 c’;'+1(0)}
(¢t =1,2,...,n-1)

(see [5], equation (1.4)).
THEOREM 2.4. The interpolation problem (1.3), (1.6) has exactly one
solution.

Proof. The proof of this theorem is similar to that of Theorem 2.1.
In this case the matrix of the system (2.19) with unknowns ¥,, ¥5, ..., ¥n-1
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(Yo, ¥, are given) is also tridiagonal and its determinant is equal to

n—1
(="' [] ;.
j=2
According to Theorem 2.2 we can prove the following

THEOREM 2.5. The interpolation problem (1.5), (1.7) has a solution if

(2.20) Z M, ,+M,)p; = m,—m,,
j=1
where

a;(0) + ;(hy)
h.

J

p; =2 (G=1,2,...,n).

The interpolant t is nonunique.

Proof. An idea of the proof is similar to that of Theorem 2.2. The
system of equations (2.19) and two equations obtained from the boundary
conditions (1.7) give the following system of linear equations with unknowns
Yoy Uiy eeey Ypu'

—Yo+ Y1 = by [My0,(hy) — M, 0'1(0) +m,],
Pig1¥ia— (bt R )Y+ by 0 = Bphyy { —M;_105(0) +
+ [03(h3) 4 071 (B0 1M —M; 0';'+1 0} (=1,2,...,2-1),

Yna—Yn = h’n[_Mn—l G’:L(O) +Mn0;z(hn) _mn]'

The matrix 4,,,, of this system is tridiagonal and the k-th main minor
4, is

(2.21)

k—1
1) [ (=1,2,...,m).
j=1

Hence, d,,, = det4,,, =0 and rank4,., =n. Let A4, denote the
Submatrix of 4, , formed in the same way as in the proof of Theorem 2.2.

For the entries q.; of the inverse matrix to the matrix 4,, by (2.3) we
have

(‘)2 ) qM' = - h

n

» (1 =1,2,...,m; hy =1).

j—1%j
Further, let 4" = (¥, %1y -+, ¥,_;) and ¢ = (p1, @s, ..., ¢,), Where
@1 = by [ Moo, (hy )_M161(0)+m0]7
(2.28) g; = Ry, Iy { — My 01 (0) + [0y (y_y) + 0} () 1M, — M;(0)}
j=2,3,...,n—1),
Pn = by 1B { —M,_50,_,(0)+ L1 (Bpy) + 05 () 1,y —
— M, 6,(0)} — o1 Y-



326 M. Maciejewski

For a linear system A4,y = ¢ we have

n
Yn1 = anj%'-
j=1

Putting (2.22) and (2.23) into the right-hand side of the last equality
and performing some simple calculations, we obtain

n
Yn-1—Yn = hy {2 [—M;_, 0';'—1(0) + [03"—1 (Bi_1) + Ug(hj)]qu - 0';;(0)1'[]'] +

J=2

+M00'1(h1) —M, 0';(0) +mo}'

Comparing the right-hand side of the above equality with the right-hand
side of the last equation in (2.21) we obtain the desired result (2.20).

The system (2.19) with unknowns ¥,, ¥y ..., ¥n (Yo, ¥, are given) has
a lower triangular matrix with elements %; (¢ =1,2,...,2—1) on the
main diagonal. Hence we get

THEOREM 2.6. The interpolaiion problem (1.b), (1.8) has exactly one
solution.

We also have

THEOREM 2.7. The interpolation problem (1.5), (1.9) has ewactly one
solution.

Proof. Condition (1.9) yields the equality

Yi—Y%o

(2.24) .

= Moo, (hy) — M, 07(0) +mq.

Equations (2.19) and (2.24) form the following system of linear equations
with unknowns ¥,, ¥,, ..., ¥, (Yo, Mo are given):

Y1— %o
ky

= Mooy (h,) “1'110';(0) +mq,

(2.25)
i Y- Y1 Y ’ ’ '
— Vi Vim T TY o 60(0) + [0 () + 0 () 1M —
R hir

—M;.,00,,(0) (E=1,2,...,n—1).

i+l

The matrix A, of this system is lower triangular with elements on the
main diagonal equal to 1/h;, ({1 =1,2,...,n). Hence det 4, 0.
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3. Error bounds. For the sake of brevity we put
k .
f,( ) =f(k)(wi)7 ?/g‘k) = T(k)(mi)’ egk) = ?/n(;k) —fz(k) (¢t =0,1,...,n),

h = max h;, o = max aj,

1<isn 1<isn
1 o(h) 1 ¢;(0) 1 L (fi—fil,
ad, —m — — 4 d b. _ — + : . == — hz. —1—1 —_ .
1 3 hi H T 6 hi ) ct 6 T hi fz—l

G =1,2,...,0).

We denote by o(f, h) the modulus of continuity of the function f with
Parameter k. Let |- |, denote the matrix of the co-norm and let |- | stand
for the max-norm over [0,1].

According to the definition of the function o(t) we obtain easily
the following

"LEMMA 3.1. If t € [0, h;], then

(3.1) o,(1) <0,
(3.2 .y 1
) o; (1) = azo(t)+ e
(8.3) 0 . <i 2 p2
RS T T
1
(3.4) log (8)] < = B,
3
5 1
(3.0) 0 < aigzgazh%,
3. 7
3.6 0 < by < o i,
3.7 3
31 ]Gi(hi_t)l+lGi(t)]<'4—hi,
(3.8)

Fi(t)=0, F(h—t)+F;(1) =1
fOT 7 =1’2’“.’n.

We can now prove the following
o ZTH.EOREM 3.1. Letn > 1 (n odd), f € C*[0,1], and let v € Sph(4,, a) be
Otution of the interpolation problem (1.1), (1.2) with tension parameters

a, = 3
i=elj=1,2, ..y M) and equidistant knots x; =i/n (¢ =0,1,...,n).
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If m; =f;, ¥o = fo, and y, = f,, then

-1 3
39)  Ir—fI<o(f, W+ B If+ "B Iml) + - hlml.,

-where h = 1/n.
Proof. We use the obvious equalities

(3.10) firn—Ffir = 2K+ haf"' hs’f‘s’ 8:),

’ ’ !’ 77 1
{3.11) fioa—2fi+fi ='W+ 1—2h4f(5)(’7i)
(®;_y < 05, N << @iy 1 =1,2,...,n-1).

‘Under the above assumptions, the system of equations (2.6) takes the
form

! 1 14
((3.12) Y1t Y = ( fz 112 lfi‘l‘ o1 fi+1)
(t=1,2,...,n-1),

‘where v is defined in (2.7). Subtracting (3.10) from the above equality
-and using (3.11) we obtain

1 1
{3.13) —€;_1 e, = _?E_hsf(S) 7;) — 50 hsf(5)(5i)~

1 , o .
A3 ) ) =115 = =0

Let 4,_; denote the matrix of the system (3.13). It is known (see [1],
equation (2.10)) that |4.%,]l, < (n—1)/2. Consequently, by (3.3) we
obtain

—1
(8:14) lell < === (B 17N + oA [olc).

Let #(x) be an auxiliary function defined in the following way:

(i) w(x) belongs to lin{l,«, sinh(azx), cosh(az)} for w e [z;_;, %l
(6 =1,2,...,m);

(i) w(z) =fi, w' (@) =F (¢ =0,1,...,n). .

It is obvious that such a function u(x) always exists and is unique.
For » e [2,_,, 2], w(x) may be written in the form (see (2.4))

(3.15) w(@) = fo_, Fy(h—1) +f,F,;(t) +fi_ G (h—1) —f1G;(1),
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where t'=z—ux;_;, F;(t) and G;(t) are given in (2.5). Using (§.15) and
(3.8), we obtain
f(@) —u(@) = [f(@) —fi 1F (b —1) + [f (@) —f1F:(8) —fi 1 Gi(h —1) + £, Gy(2) .

Hence and from (3.7), (3.8) we obtain the estimation

3
(3.16) Wf =2l < o(f, )+ 2 limlleo.

By (ii), (3.15), and (2.4) we get

‘ T(x)—u(r) =6 F,(h—t)+e; F; (1) (e[, 2]).
Consequently, by (3.8) we have
(3.17) I —ul < lléllo-

From (3.14), (3.16), (3.17), and from the triangle inequality we obtain
the thesis of our theorem.

THEOREM 3.2. Let n>1, fe C®[0,1], and let v eSph(4,,a) be
a solution of the problem (1.1), (1.4) with tension parameters o = a
(j=1,2,...,n) and equidistant knots z,=i/n (4=0,1,...,n). If m;=f;,
Yo = fo, and y, = fi, then

1 3
If =zl < w(f, )+ TR 4 BN+ o* B ml) + N hlimllo,

where
_ {’n—l for n odd,
P = for n even,
and h = 1/n.

Proof. The initial conditions (1.4) (¢, = ¢; = 0) imply that the
matrix 4, _, of the system (3.13) is of the form

1
0 1 0
1 0 1
0 .
1 0 1
Hence
1 (n—1)/2 for n odd,
47 10l =
n/2 for » even.

11 — Zastos. Mat. 18.2
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From now on the proof goes along the same lines as the proof of The-
orem 3.1.

Below we shall give the estimation of the errors for the interpolation
problem (1.5) with conditions (1.6)-(1.9). The function 7z(z), given by
(2.18), can be written in the form

(3.18) 7(a) =Y+ Wi+ 5 e, + =
1 .4 ! !
+Fait [M;0:(&)—M;_,0:(v)],

where t = x—w,_,, %;_, < &, v, <@; (1 =1,2,...,n). Using the Taylor
series expansion of the function f e C*[0,1], we have

fi—fia

(3.19) =

=f-i,—1+ zfz l+ llel’1+_—h3flv(a:),

i

(3.20) fi—fia —hJ."1+ hZf:”1+—h3f“’ (89,

fi —fila

(3.21) -

17! 1
= fi+ ?hiflv(%‘),
where x;_, < a;, By v: <@y and ¢ =1,2,...,n.

THEOREM 3.3. Let f e C*[0, 1] and let z(x) e Sph(4,,, a) be a solution.
of problem (1.5), (1.6) with equidistant knots x; = i[n. If M; = f!'y Yo = fos
and Yy, = f,, then

(3.22)
i N & 8 .
537U+ 8+ - at ML (14 K| for k=0,
10— < { o 1) (1+8—§— h2)+—4-738—a2 1Ml (1+18R)  for k =1,
h 44—k v I 4-k
(3) 1+ (g) a1 M, fork=2,3,

where h = 1/n.
Proof. We shall use the obvious identities

4
(3.23) fios— et fens = BF 4+ 2 1789,

(3.24) fz”-l — 2](;{, +f1'l-’p1 = h4f1v(77i)1
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Where 2; _, < 6, n; < #;,,, and ¢ = 1,2, ..., n—1. Since the knots z; are
equidistant, the consistency relations (2.19) take the form

(3.25) 9, 1 —29;+¥ip1 = B{—FiL10:(0)+ [6}(h) + &}y (R) 1} —Fii1 0741 (0)}
(t=1,2,...,n—1).

Subtracting (3.23) from (3.25) and using then (3.24), we obtain

77;4 1"
(3.26) e€;,_,—2¢;+¢€., = 2 2™ () —f*V (81— WP [(a; + a )i +
+bifz{'—1+bi+lfzf-,|-1] (t=1,2,...,m—1; ¢, = ¢, = 0).
Let 4,_, denote the matrix of the system (3.26). It is known that |42,
< n%/8, which together with (3.26), (3.5), and (3.6), implies

2

(3.27 ST L Y
27) lello < - 177+ - | M-

From (2.18) it follows that

Yi—Yi_

Yiog = A = — o)+ ei(0) (6 =1,2,...,n).

Adding to this equality the expansion (3.19) we obtain

’ ei~ei_ ”" 7] h’3 .
€= —h—l +h(fi 0+ bi)_ci"‘ﬂflv(ai) (t=1,2,...,n).

Similarly, for ¢, we have the formula

3
’ e

n— Cn— " 2
€ = '___h—'i —h(fn— n— l_l_fn Tc _Eflv n)7

Where

' h2 f',’;,_l '—f;: 127
“=%\" a

+fn ) wn—l < on < wn'

Applymg the Taylor expansions to ¢; (¢ =1,2,...,7) and ¢,, and then
using (3.5) and (3.6) we have

3

h
(3.28) lle’lloe < nen + 57 @M, + uf”n

Expanding the function f(x) into the Taylor series and subtracting from
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(3.18) we finally obtain

, A
I7(2) —F (@) < lesal + Rl + 5 [2 Y (el + 1Y )11+

2

h , ,
+a?_6— 1Ml [lo; (8 + 1oy (w11 (e < m; < ).

Consequently, by (3.27), (3.28), and (3.4) we obtain the estimation (3.22)
for ¥ = 0 and ¥ = 1. The proof for the cases ¥ = 2 and &k = 3 is similar
to that of Theorem 2.4.3.1 in [7].

THEOREM 3.4. Let feC*[0,1] and let v e Sph(4,, a) be a solution
of the problem (1.5), (1.8). If M, =f/ (i =0,1,...,n), yo =f,, and
Y1 = f1, then

(3.29)

15 5
for k =0,

ht ht 13 1
57 I +15m —4)+ - a? [, (n +2" - —)

[ — @ <

5 3 1 1
SufIVp el 3 2 o —
B "(12’”8) B | Ml ( 5 24) for k=1,

h\4F h 14—k
(3) v (g) e jor b =2,3,

where

h = max h,.
1<i<n

Proof. Case &k = 0. The consistency relations (2.19) can be written
in the form

1
h (Y= Yic1) + —— (Yi01 —Y:) = @4y

(3.30) —
i hiyy -

where
@ = _fz{il 0';(0) +fc{’ [0';‘("'1') + 0';'+1(hi+1)] —fzf-ll-x 6:‘+1(0) (t=1,2,...,n—1).

Adding the first I —1 equations we have

y’- Z LT s, ..

i=1

!

Subtracting (3.19) from the above equalities, after simple calculations we
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obtain
-1

_3_ . 17 11 1"
— = —th(mﬁ beolfi = O i@ B)f; +haba (£ —F0) —

=l

17 144 h3 ha
—Ib(fi —fis))—ea+oa+ '2_;‘f1v(‘11) —2—iflv(az) +

-1

+| X3 G +i—1].

i=1

Now we apply the trapezoidal rule for the expression in the brackets.
Further, making use of (3.21), (3.5), and (3.6), we obtain the following
estimation for |e|,:

4 4 2

(8:31) el < 2—4 IFTV I (n®+5n —6) + —— * | Ml (n2+ B E)

Case &k = 1. By (2.18) we obtain

Yi—Yioa = (Fil+ 1) [op(hy) — 0:(0)].

Subtracting (3.20) from this equality we have
’ ’ 17 17 h’?
(8.32) e;—e;_1 = —h(a;+b)(f; "|‘fi—1)‘|‘30i—?fw(ﬂi)
(t=1,2,...,n).

Taking into account (2.18) together with the initial conditions and (3.19)
Wwe get.

?/o = _fél 1+ fé”hQ‘l‘—fIV 0‘1)7"3

Add-mg the first I equations of (3.32) and making use of the last equality,
after simple calculations we obtain

4 1
= - Eh;<a,-+ b)(! +I)+3 e, ——Zhsf” B)-+20,+
) h bt @) 0=1,2, 0.

By (3.21) and (3.5), (3.6) we obtain

1 1 1
(3.33) el < B3 llf“’u( b——z)—;—lﬁa’anl ( 2%-—51—)
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Expanding the function f(x) into the Taylor series and subtracting from
(3.18), we obtain

fl” f’l” e
h : f'l 1

(@) —f(2) = e, +1e;_ 1+——t3(

7

1 9 r ! 1
+~6_t3a~[fi ai(E fz 10 1)]_ t4fIV

(T, < O,<zy; 2 =1,2,...,m),

where ¢t = ¢ —x;_,. Consequently, by (3.21), (3.31), and (3.33) we obtain
inequality (3.29) for k¥ = 0.

Similarly one can prove (3.29) for k¥ =1 using (3.21) and (3.33).
The proof in the case ¥ = 2, 3 is quite similar to that of Theorem 2.4.3.1
in [7].

THEOREM 3.5. Let f € C*[0,1] and let v € Sph(4,, a) be a solution of
the problem (1.5), (1.9). If M, =f," (i = 0,1, ..., %), Yo = fo, and my = fy,
then

||r("') _ f(/\‘)”
4

3 1 2
9 v ° N N P .
[2* (n2+4n+3)|f ||+ (n +3 = n+2 3)a M, for k=0
<

/5 %
5 (O I+ o (n+4) o ML, for k=1,
l h 4—k h 4—k
(E) 11+ (—2—) a* (| M for k=2,3,
where

h = max h,.
1<in

Proof. Case k¥ = 0. Adding the first ! equations of (2.25) we obtain

Yi—Yi

(3.34) .
1

-1
= fo 1] Gl ) £ SO+ e,
=1
where ¢; is such as defined in the proof of Theorem 3.4. Subtracting (3.19)
from (3.34), after simple calculations we obtain
€6 —€_,

-1 -1
S (b = Y Ben (@b = ) Iela 07+
! =1 i=1

143 r? 1 'd
+ b (fy —fio) o — ﬂh? v (a) +

-1

PR e |

=1
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As in the proof of Theorem 3.4 we usc the trapezoidal rule for the ex-
Pression in the brackets while for ¢, we apply the expansion (3.21). From
the initial conditions it follows that e¢, = 0. Consequently, by (3.5) and
(3.6) we finally have

1 1 , 14
lelle < 5 B (024 20) IF VI 4 5 B a? | M (n + 55 n).

d

Case k¥ = 1. From (2.18) we have

v = L0 M 6j(0) 4 Mysi(h) (E = 1,2,y m).
l

Subtracting f; from the both sides of the last equality, by (3.34) we
Obtain

l

l r ’ h ’? ’r ’ !
i = = D hlet AL+ Y G+ 1]

i=1

(Il=1,2,...,n).

For the expression in the brackets we use the trapezoidal rule. From
the initial conditions it follows that ¢, = 0. Consequently, by (3.5) and
(3.6) we have now

/ 1 s v 10,
lle'llee < E’nh 171+ 1—2%70 a || Ml -

Further, the proof goes along the same lines as that of Theorem 3.4.

Acknowledgement. The author is grateful to Dr. E. Neuman for
elpful discussion and careful reading of the manusecript.

References

1] R. E. Carlson and C. A. Hall, Bicubic spline interpolation in rectangular polygons,
(2] J. Approximation Theory 6 (1972), p. 366-377.
. Neuman, The inversion of some band matrices (in Polish), Mat. Stosow. 9
(1977), p. 15-24.
B3] - Cubic

st splines with given values of the second derivatives at the knots, Demon-

Tatio Math. 14 (1981), p. 115-125.

— Cubic splines with given derivatives al the knots, Funct. Approximatio Com-
ment. Math. 11 (1980), p. 25-30.

(4]



336 M. Macicjewski

[6] S. Pruess, An algorithm for computing smoothing splines in tension, Computing
19 (1978), p. 365-373.

[6] H. Spath, Exponential spline interpolation, ibidem 4 (1969), p. 225-233.

[7] J. SBtoer, Einfihrung in die numerische Mathematik. I, Berlin 1972.

INSTITUTE OF COMPUTER SCIENCE
UNIVERSITY OF WROCLAW
51-151 WROCLAW

Received on 2. 12. 1981



