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RECURRENT EVENTS IN QUEUES WITH INDEPENDENT
: ARRIVAL INTERVALS

1. Definitions. We consider a single-channel first-come-first-served
Queue with a general independent input distribution and a general ser-
vice time (a QI/@/1 service system). For n >1 let 7, be the arrival in-
terval between the nth and (n+ 1)-st unit and y, the service time of the
nth unit. The {z,} is assumed to be a sequence of independent non-neg-
ative random variables with a common distribution. So is the sequence
{¥»}. Then the differences d, = y,—7, are independent and identically
distributed random variables with a distribution function, say, F(x)
= P{d, < x}. The sums of the differences J, will be denoted by

S, =6+...4+6, n=x=1,
8, = 0.

Let V, stand for the waiting time (in the queue) of the (n- 1)-st
unit. As soon as the service of a unit is completed, the service of the next
one beging, unless the waiting line is empty. If there are no waiting units,
the server is idle up to the arrival of a new unit. The time interval between
the moment when the nth unit leaves the system and the moment when
the (n-1)-st unit enters the service will be denoted by W,. The measur-
ment of time begins with the arrival moment of the first unit. Therefore,
Vo=W,=0. Clearly V,>0 and W, >0, V,>0 implies W, = 0
and W, > 0implies V,, = 0. Inversely, V,, = 0implies W,, > 0and W,, = 0
implies ¥, > 0. Owing to this V,+ W, is equal either to V, or to W,.
It will be shown further that the random variables V, and W, are strictly
determined by 4, or §,.

2. Basic relations. Consider two moments: ¢, when the nth unit leaves
the system and ¢, when the (n--1)-st unit arrives. From the definitions
mentioned previously we find

b =y1+W1-I—...—|—yn_1—f—W,_1—[—yn, b = T1+...+ 1.

The difference ¢, —¢,, denoted by &,, gives V, or —W, according
agty, <tyort, <t If ¢, =1¢,, both V, and W, are zeroes. Hence we have
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the following relations:

n 71 n n—1
fn =t — 1y = 2 (%'—fi)-!—z W; = 259'+ 2 w;,
1 1 1 1
V, =0 and w, = —¢,, if En £ 0,
Vo=2¢& and W,=0, if & >0,
Vn_‘Wn == fn-

The first and the last equations give furthermore a recurrent formula

N

w41 [

Eon =D 8+ DW= b0+ Wt &y = 8uiy+ Vo
1 1

These relations can be written in the equivalent form

(1) Eup1 = Oy +max (0, &), & =0,
(2) V, = max(0, £,),
(3) W'n = Vn“‘ n = —min(O, fn),

We will now prove a lemma expressing the quantities &,, V,, and W,
in terms of the sequence {8;}. Since the elements of this sequence are
sums of independent random variables §; having the common distribu-
tion F(x), the distributions of &,, V, and W, depend on F(x) only.

LEMMA. For n > 1 we have

(4) & = 8,—min(0, 8y, ..., 8, 1)
(5) Vn = S'i,—lnin(()’ Sl’ wsiey Sn)?
(6) W, = min(0, 84, ..., 8,..,))—min(0, 8,, ..., 8,).

We prove (4) by induection. For n = 1 the formula holds because
¢, = 0,. Assuming that it is true for arbitrary n > 1, we shall show its
validity for n+-1. Since &,,,= 6,,,+max(0, &,), it is sufficient to con-
sider only the second term

max (0, £,) = max[0, §,—min(0, 8,,..., 8, ]
= 8,+max[—8,, —min(0, 8,, ..., 8,_,)]
= 8,—min[8,, min(0, 8,,..., 8, 1]
= 8,—min(0, 8;,..., 8,).

Thus &,y = 6,,;,+8,—min(0, 8,, ..., 8,) = 8,;;—min(0, 8, ..., 8,) as
asserted.
Formulas (5) and (6) follow immediately from (2), (3) and (4).
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3. Recurrent events. We shall now describe our service system in
terms of the theory of recurrent events. For the necessary definitions
and theorems see Feller [1].

DEFINITION. We say that an event E occurs at the n-th place in the
sequence 8,,8,,...,8,,... if one of the equivalent events (7) or (8) is
observed: :

(7) £ <0 =8, <min(0, 8, ..., 8,.1)(),
(8) Ve=10=248, =min(0, 8,,...,8,). |
In order to examine whether E is a recurrent event, one needs to

verify two points:

(a) E occurs at the mth and (m—+ n)-th place in the sequence 8y, ...,
Smy ..oy Smin if and only if it occurs at the la.st place in each of the sub-
sequences S8, ..., 8p and Spmyry ..oy Smyn-

(b) Whenever this is the case, these two events are independent.
THEOREM. E i8 an recurrent event.

Proof. Only the second point requires testing. Assummg that E
has occured at the mth and (m+ n)-th place in the sequence {S;}, we have

P{Vm =0, Vinyn =0}
o= P{S =min(0, ..., Sm), Smin = min(0, ..., Sp,n)}
= P{8,, = min(0, ..., 8), Snyn = min(Sp, -..; Smyn)}
=P{8p =min{0, ..., Sm); Smin—Fm = Min (Sp—SFmy ++cs Bmin—"8m)}.

For fixed m let us write Sp,;—8n, =8, §F—min(0,...,8) = V},
J=0,.un

Then we get _
P{8, = min(0, ..., 8y), 8§ = min(0,..., 83)} = P{V,, = 0}P{V} = 0}
since the random variables §; = 8;,+...+&; (i <m) and 8} = 6m nt

~+...4 0n,; are independent.

With a recurrent event there are associated two probabilities: the
probability u, that E occurs at the nth place and the probability a, that
it occurs for the first time at the nth place. For » > 1 we have

9) Uy = P{§, <0} = P{V, =0},
(10) | G =P{>0,.., 8 1>0,5 <0}
—P{Vy>0,...,V,_ >0, V, = 0}.

) In-jthis case the index n is called a ladder point. On ladder points in Bernoulli
trials, see [1], p. 280.
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It will be convenient to define u, =1 and @, = 0. Let U(s) and A(s)
denote the generating functions of the sequences {u,} and {a,}:

U(8) = Zoo:uns”, A(s) = Zans”.

1

It has been shown ([1]) that
(11) Uy = QG Up_1+ Aoy oo Gy Uyt Gthy, 7> f,

1
12 U(s) = .
[(12) @) =14 ®
Note that {w,} is not a probability distribution. The sequence {a,},
‘however, is one, and therefore

An integral-valued random variable T with the distribution
P{T =n} = a,

is called the waiting time for E or the recurrence time of E. More exactly,
T is the waiting time between successive occurrences of E. If ¢ < 1 then
1—a should be interpreted as the probability that E will never occur.
In this case one may conventionally write P{T' = oo} = 1—a.
Following Feller, a recurrent event is called persistent if a =1 and
transient if a < 1.
Further, note two 1mportant theorems ([1]):

1) E is transient if and only if the series u = 2 Uy, converges. The prob-

ability that E will ever occur 48 1—u~
2) If E is persistent and not periodic, then limu, = ' where u = A’(1)

N—00
s the mean of the recurrence time T'. If u, — 0, p i8 infinite.

4. Distributions of recurrence time and waiting times. If F(x) is the
distribution function of the differences d;, then the joint distribution of
the n-dimensional random variable (8,,...,8,) is given by

P{Sl wl’ Sﬂ < w'n}
Zp_1

= f dy F (1) fzd,zzf’(tz—tl). f dyy_ P (tny— tn_y) f @ F (b — ).

Moreover, if d; is a continuous random variable with a density f(x) = F’ (x)
then the density function of (8., ..., 8s) i8 f(2:)f(@s— @1)...J (%n— Tu_,)-
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Consider first the probabilities u, and a,. From (9) we have
Uy = P{V, = @} = P{8, = min(0, 8y, ..., §,)}
=P{8,<0,8, <84, ..., 8, <8_1}
=P{8,<0,8,—8,<0,...,8,—8,_; <0}.

For fixed » we now write §; = 8,—8,_j = 0p_jy1+-.cF0s, 1=0,1,..., 0.
We have '

(13) u, = P{8; <0,8,<0,...,8,_,<0,8, <0}

0 0 0
= [aFt) [duF(t—1)... J @ Pl — 1)

= fof(wﬂdwl ff(a”z;fnl)dwz- ff — &y—1 ) ATy

From (10) we have
(14) a’nZP{E1>03---7§n—-1>0,§n<0}
= P{8,>0,... Sn_1>0,8n<0}

I

f F(iy). fdt 1 (b — fdt —tp_1)
0

f(w,)d,... f F(@n_1— @y g) Ay f F(@n— ) dity

Note that
(15) P{8;>0,..,8,>0 =1—a,—...—a,.

We shall now find the distribution funections of the random variables
én, V, and W,. For &, we get

-1
Plen <o} = 3 P{&y <, 8 =min(0, 8, ..., )}

i=0
= M P{8,~8 <=, 8 =min(0, ..., &), 8 = min(8, ..., 8,_,)}
"ot |
= M [P{8 = min(0, ..., §;)} X
i=0
XP{0=miIl(O,Sj+l-"Sj,...,S S) S S .’17}]
n—-1

= D P{V; = 0}P{8,>0,..., §n_s_1 > 0, 81 _; < a}.
i=0
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For brevity we put
P{81>0,...,8._,>0, 8, <o} = a(x).
Thus

(16) P, <z} = 2 Uy ().
i=0
Hence in a particular case we obtain formula (11)
n—1 n—1
Pl <0} = D w0, 4(0) = ) wa,; = uy.
i=0 i=0

Using (2), (3) and (16) we get the distribution functions of V,and W,

if <0,

(17) P{V.<a} = :
P&, <a} if z>0;
if 0
(18) P{W, <o} = I s
P&, > —a} if x>0.

5. Busy period. The service channel is busy up to the first oceurence
of E. The busy period is therefore the sum of a random number of ser-
vice times y;. Namely it is

Yy =y1+t...+yr, }

where y indicates the busy period and 7 is the recurrence time with the
distribution {a,}. To obtain the busy period distribution we write

P{y <@} = Y P{y+...+yr <o/T = 0}P{T = n}

= ZanP{71+...+yn < o}
1

Denote by B,(z) the distribution function of thé sum »,+...+ y, and by
B(x) the distribution function of the busy period y. Now

(19) B(2) = P{y <a} = D auBu(a).

- Let b stand for the mean busy period and g for the mean service
time. If b and g are finite then

b= [ @dB(2) = [ @ ) a,dB,(2) = Za.,,fde (@)
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Since this series express the mean recurrence time, we have proved that
the mean busy period is equal to the mean service time multiplied by
the mean recurrence time:

(20) b = Bu.
6. The special case of symmetrlcally distributed differences ;. We
shall prove the following

THEOREM. If the differences O, have a symmeiric distribution function,
toe. F(—x)+F(x) =1 at all poinis of continwity of F, then E is persistent
and its mean recurrence time is infinite.

Proof. Remark that in this case the relation
P{8;<0,...,8, <0} =P{8;,>0,...,8, >0}
is true. Using (13) and (15) we may write
Up =1 —Qy—...— Oy Uy — Uy =@y, N =>1.

Multiplying the last equality by s" and summarizing it, we get after some
calculations

(1—s8)U(s) =1—A(s).
Together with (12) we have two equations from which we may obtain

U(s) and A(s). Considering the conditions U(0) = %, =1 and A (0)
= @y = 0, we get

U(s) = A(s) =1—V1—s.

1
Vi—s’
Thus a = A(1) =1 and u = A’(1) = co. The proof is completed.

The expansion of the generating functions into power series gives
us the probabilities

@n—1)!
U =~ 1 U= 1,
(2n—3)!! _1
In="opn * M7

7. Examples.

(a) Arrival intervals and service times are exponentially distibuted
with means a and ﬂ respectnvely

. 0 f a<0,

Pz, <$}7= 1—e i o> 0;
Pl <a) = |O if  «<0, |
1—e ™ if x>0.
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Then the distribution of the differences &; is given by
pel if x<0,

F(x) =
() 1—gqe ™ it x>0,

where p = F(0) = af(a+p) and ¢ =1—p = B/(a+p). Using (13)
and (14) we get after some calculation the generating functions

Afs) = 1—1/1_—4pqs , Us) = 2qm .
2q 2¢q—1 +V1— 4pgs
Thus
oo aq -~ Lol—d :Il it p>1f2,
2q plg if p<1/2.

We see that E is persistent if p > 1/2 and transient if p < 1/2. In the
second case the probability that E will ever occur equals p/q. For the first
case we obtain the mean recurrence time

P
P—q
oo it p=1/2.

w=A'(1) = it p>1/2,

For p >1/2 we can also write u = af(a—f).
From (20) we get the mean busy period b = of/(a—p).
(b) Exponentially distributed arrival intervals and constant ser-
vice time.
0 it z<o0,
1—e ™ if 2>0;
0 if x<g,
1 if =>=8.

.P{‘L’k gm}=|

P{yr <o} =

The distribution of the differences is given by
bt it s,

F(w)z'l it @>8,

where p = F(0) = ¢~ ¥ It is not easy to obtain here explicit expressions
for the generating funcions. It may, however, be shown that
' n—1

n
@, = p(—plogp)"* —

1 1

and that F is persistent if p > ¢~' and transient if p < ¢~ If p = ¢7',
its mean recurrence time is infinite.
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(c) Constant arrival intervals and exponential service time.

0 if =z<a,
P{Tk << w} = .
1 if x> a;
Pl < 0 f <0,
= ¥y =
WeS<EH=\_o i oo
The distribution of the differences &y is given by
0 it o< —a,
Fla) = ;.
1—ge ™ if x> —a,
where q = ¢ %% p = F(0) = 1—g¢. It may be shown that
n—1
ol n—1
Un_1— Uy = q(—qlogg)" —

Now E is persistent if p > 1—e! and transient if p < 1—e .
In these examples » always indicates the probability

that the service time will not exceed the arrival interval. The difference
between those three cases are significant.
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J. RZYTK A (Gliwice)

ZDARZENIA REKURENCYJNE W KOLEJKACH O NIEZALEZNYCH
ODSTEPAOH MIEDZY WEJSCIAMI

STRESZCZENIE

Tematem niniejszej pracy jest préba zastosowania teorii zdarzeh rekurencyj-
nych w systemie obstugi masowej typu GI/G/}. W systemie takim czasy czekania
kolejnych jednostek tworzg ciag nieujemnych zmiennyeh losowych {¥,}. W ciagu
tS.’m zdarzenie Vi = 0 jest zdarzeniem rekurencyjnym. Rozklad czasu powrotu ta-
kiego zdarzenia w ciagu {Vy} jest jednoznacznie okreflony rozkladem réinicy y—v
¢zasu obstugi (p) i odstepu miedzy zgloszeniami kolejnych jednostek (z). Wyznaczono
rozklady czasu powrotu dla ezterech szczegdlnych przypadkow.
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N, HUTHA (Tansuxe)

PEKYPEHTHBIE COBBITHA B CHCTEMAX MACCOBOI'O OBCJIVKHBAHHA
C HE3ABHCHMOCTBIO PACCTOAHHAN 3AABOK

PESIOME

ABTOp IpHMeHAET TEOPUI0 PEKYPEHTHHX COGHTHA K CHCTEMaM MaccoBOro 06-
cay:HBaHuA THNA GI/G/l. B Takoit cHcTeMe OTpe3KHM BpeMEH OKHAAHUA MOCJEJ0BA-
TeILHHX eAUHHL 00pasyioT mNoCIef0BATeIbHOCTh HEOTPUOATENHHHX CAyYalHHX
nepeMeHHNX {Vy,}. B arodl mocremosarennrocrn coburne Vi = 0 ABISETCA peKypeHT-
HHM cofuTHem. Pacnpenenenme BpeMeHH BOSBPATA TAKAX COOHTHH B MOCIem0BATEIh-
HocTH {Vn} OMHOBHAYHO ONpefeNAeTcA pacHpefielleHHeM DPAasHOCTH y— T BpeMeHM
o0cayKUBaHMA (Y) B NPOMEKYTKA BPEMEHH MEMKAY MOCHETOBATENLHHEMHA 32aABKAMH
(vr). B paGoTe BHYHCHEHH pacmpefedeHHS BPeMeHH BOSBPATA RIA UETHPEX MACTHHX
CAYYaeB CHCTeMH MAacCOBOTO OGCIAYIHUBAHMA.



