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SYNTHESIS OF PROBABILITY TRANSFORMERS

1. Introduction. In this paper we discuss the problem of synthesis
of a multi-input, multi-output combinational network as a probability
transformer. This work is the continuation of previous papers which
where based upon the spectral analysis of logical functions. The previous
results are briefly recapitulated in Section 3 and are reformulated into
the discrete probability domain in Section 4, where also the main theorems
concerning the synthesis problem are proved. Section 5 is devoted to the
Problem of enumeration of equivalence classes of acceptable solutions.

In Section 2 we shortly discuss the main problems concerning the
synthesis -of switching circuits as models of stochastic processes. It has
been shown that in most situations the problem of synthesis of the combi-
national probability transformer is of a special importance.

TR

2. Switching circuits as models of stochastic processes. In many appli-
cations there arises a need of simulating a given stochastic process with
Prescribed probability characteristics. The scope of problems which need sim-
ulation as a useful or only possible research tool seems practically unlimit-
ed and is fairly widely described in the literature (see [15] and [16]).

The generation of a random variable with given probability distri-
bution is one of the most important problems of stochastic simulation
and presently is established as a well-defined discipline. The existing
methods of forming a distribution are mostly of algorithmical nature
and, therefore, are well-suited for computer applications. However,
there are situations (e.g. in the case of field laboratory) when a physical
device yielding the defined process is required. One of the approaches
is to design a sequential circuit which, when supplied with a binary random
vector X = (X, X,,..., X,) with distribution P (&) = P(@,, &y, .--5 Ty,
Produces at its outputs the random vector ¥ = (Y, Y,, ..., ¥Y,,)
which is to simulate the required process X (t) (Fig. 1). In other words,
the discrete stochastic process ¥ (7) (r = 0, 1, ...) is considered as a digital
model of X (¢). The degree of adequacy between the process and the model
depends upon the synthesis goals and is basically related to the assumed

accuracy of description of X (¢). Consequently, the structure of the circuit
is synthesized to meet the assumed level of accuracy.
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Namely, if the stochastic process X (f) is characterized by the one-
-dimensional probability density p(x), then the digital model ¥ (7) is
the output of a combinational network, i.e. memoryless one. The output
distribution P(A) = P(¥%,, Y2, .-., ¥,,) Should then approximate the given
density p(=).

P(A)=P(yy,Ys,....Um)

P(&)="P(x1,%,,...,%n)
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Fig. 2. Sequential circuit as a generator of history-dependent Markov stochastic
process; D — delay element
On the other hand, if the process X (¢) is determined by the %-dimen-
sional density p(sy, Say .-y 83 t1y boy ...y &), Where ¢, for ¢ =1,2,...,k
are the discrete moments of time, then the circuit contains memory ele-
ments necessary for storing the last k —1 values of A(r) (see Fig. 2 for
= 2). Therefore, the circuit is, in fact, an autonomous stochastic auto-
maton and the generated process ¥ (r) belongs to the class of k-dimensional
Markov processes. The output distribution

P(Y1sYay-evy Ups byt +48, ..., 4+ kAT,

where At is the delay or the ‘‘clock’ interval, is now to approximate the
continuous multidimensional density p(s;, 834 ...y 8f).
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Let us note that in both cases the synthesis problem reduces to the
determination of combinational circuits realizing the required probability
transformation. The same is true when the process to be simulated is
determined by its one-dimensional density p(#) and correlation function
R (7). In this case we deal with the one-dimensional Markov model, but
the joint distribution P,(y,,¥s;t,t+4t) may be defined somewhat
arbitrarily with only restrictions

D P, 1) =Py, D Pylhy, A)v()(As) o R(40),

23 {Ag)x {45}
where v(1) denotes the numerical interpretation (valuation) of A (note
that 1 is a Boolean vector).

As far as the primary random vector X (z) is concerned, the practical
reasons suggest the white source at the input, i.e. with position- and
history -independence and the uniform distribution P(z,,...,®,) = 27"
= const for all n-tuples {(z,, @, ..., x,>. However, it has been shown that
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Fig. 3. An alternative structure-varying form of the automaton from Fig. 2

only a restricted class of distributions may be obtained in this way
(see [7], [8], [13] and [14]); such distributions are referred to as binary
realizable ones (cf. [7] and [8]).

It is clear that in the case of an automaton with memory (Fig. 2)
the inputs of the combinational network &(7), A(z—1), A(r—2), ...
-+.y A(t—k) are not generally the realization of the white random source.
However, it is possible to adopt an alternative structure-varying form
of the automaton (Fig. 3) when the memory is represented by % shifting
registers storing the last k values 4(z), A(r—1), ..., (v — k) of the output.
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In this case we deal with a finite number of the combinational networks,
each of which realizes the conditional transformation P[A(z)|A(z—1),...
..., A(t—k)]; the choice of an actual network depends upon the (k—1)-st
step history of the process.

We shall not discuss the formal conditions to be satisfied to assure
the equivalence of the two forms of automata since our purpose is to
emphasize the importance of synthesis of a combinational probability
transformer fed with the white binary vector. However, there is a need
of studying this problem with emphasis laid upon such aspects as the state
equivalence, state minimization, number of input variables, methods of
passing from one description to the other, etec. Let us only note that the
structure in Fig. 2 belongs to the class of so-called S-automata ([4]and [6]),
while the structure in Fig. 3 represents an M-automaton, and that any
M-automaton may be reformulated as an S-automaton, though the in-
verse operation is not always possible.

Let us also note that the possibility of synthesis of a stochastic auto-
maton as a deterministic one fed with a random variable has been proved
by many authors (see, e.g., [1]-[3]); some aspects of realization have
been discussed in [3] and [11]. However, the problem of synthesis of a com-
binational transformer has not been paid many attention to in the litera-
ture (cf. Warfield [13] and [14]).

Recapitulating thus our considerations, we may divide the synthesis
problem into the following five steps:

1° Determination of the principal goals of the simulation problem
at hand, i.e. what characteristics of the process to be simulated should
be taken into account in the discrete model.

2° Approximation of the continuous density (densities) by the dis-
crete distribution (distributions).

3° Approximation of the above-mentioned probabilities by the binary-
-realizable ones.

4° Determination of the conditions which are to be satisfied by any
set of logical functions v, ¥,, ..., ¥,, to realize the required probability
transformation.

5° Choosing — perhaps on the base of an additional criterion — the
best solution.

Step 1° is entirely based upon the nature of the problem to be solved
by the simulation method and, therefore, we shall treat it as a given
design specification.

Step 2° has been solved in [10].

Step 3° has been solved in the recent paper [8] for the one-dimensional
density case but it may be easily adopted to handle also the multidimen-
sional case.
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“The spectral approach as a tool for handling the problem of analysis
and synthesis of a probability transformer has been developed in the recent
papers [7] and [8]; this paper contains, as their continuation, the solution
of step 4°.

The last step — an optimization of the solution — is to be left aside,
since it strongly depends upon the assumed criterion of optimality.

Let us also mention that in [9] we have developed an algorithmic
method (a generating function) for determining the orthogonal expansions
of logical functions; this approach proved to be useful as a convenient
tool for translating the results obtained in Section 3 on the base of spectral
approach into the discrete probability domain (Section 4).

3. Synthesis. The problem of synthesis of probability transformers
has been formulated in [7] in the following way.
Given binary random vectors

X=(X1,X2’.-.’Xn) alnd. Y=(Y1,Y2’.o-, Ym)

with distributions
P(&) =P(2y, B3y ..., ) and  P(A) = (Y1, Yzs+++r Ym)»

respectively, we have to find a set of Boolean functions y; = f;(%1, %s,..., %)
(¢ =1,2,...,m) that transforms the random variable X into Y.

The approach applied was based upon the orthogonal expansions
of the logical functions and probability distributions into the Walsh
series. According to the definitions introduced previously (see [8]), the
set of Fourier coefficients a = (a,, a,,..., amn_,) of a logical function

Ja(®1y ®Bay o ony m,) = f(E),

where

2n_1
a; = 27" Y Wi(&), ful&) = 3 a,Wi(&),

&} i=0
or, symbolically, a= y(f,) with f,= v~'(a), will be referred to as the struc-
ture of the function f(&). Similarly, for any discrete distribution P(é’)
there exists & uniquely determined set of its orthogonal expansion
coefficients ¢ = (¢y, ¢;, ..., Cn_;) referred to as the spectrum of P(&).
The main results presented in [7] establish the necessary and sufficient
conditions for any ordered m-tuple of structures to represent the set

of m logical functions y,, ¥, ..., ¥,, realizing the required transformation.
They have been formulated as the set of the equations

1) @0d =d (i =1,2,...,m),
9 = @j(d,a®, .., d™)  (j=0,1,...,2"-1),
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where o denotes the structure of y; = f;(£), and g; — the elements of
the spectrum of the output distribution P(4) = P(¥;, Y2y -3 Um)-
Let ©® denote a binary operation such that if

a =(a'07a’17-°-’a’2"—1) and /3 =(b07b1a--'7b2n—1)

are 2"-element vectors, then ¢ = a®p (see [7] and [9]) is the vector
€ = (€y, 61y ..., €an_,), Where

21 2n_1

b; = 2 a]”]@t 2 a]@t
= i

The function ¢;(a, o®, ..., ™) has been defined implicitly by
recurrent formulas for the spectrum of the joint distribution P(¢&, 4).

In the general case we deal with a set of m-tuples that constitute
the solutions of (1), rather than with one unique solution. Since these
solutions belong to equivalence classes defined by the probability trans-
formation relation, the set of all possible m-tuples is structured in a nat-
ural way by the conditions established by (1).

We assume that the necessary conditions for the existence of a solu-
tion are satisfied (see [7] and [13]). It means that the output distribution
P(4) belongs to the class of binary-realizable distributions with its sto-
chastic degree being less than n. Let us recall here that the stochastic degree
of P(4) is defined as the length of the binary expansion of P(4;) for
j=0,1,...,2m—1.

It has been shown in [7] that the spectrum 6™ of the joint input-
-output distribution P (&, 1) consists of 2™ segments g; (¢ =0, 1, ..., 2™ —1),

2m_

&M = U Qi»
=0

where p,00; denotes the concatenation of segments o, and ;. Every
segment corresponds to the subset of the output variables y; (j =1, 2, ...
.., m) and has the form

(i

_1)l ; )
?) @f=2 G 00aP0d?Y0 .. @a<v+‘§nv

where j = 2171421 420! andr, (4 =1,2,...,m) is the number
of outputs associated with the segment g,, called the rank of o;, and struc-
tures o'V, o®@, ..., o® exhaust all possible combinations of the chosen
subset of output functions.
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For example, if m = 3, we have

0 = (30)o (30 —1a ©®0)o (30 —1a® Go)o
o(30— 1P ®c—1a® ©o+3aM © d® Go)o
o(}0 —1a® ®c)o (30— 1a ®c —1a® Oo 43 © d® O0)o
o (40 —1a® @0 — 1a® G0 + 3a® © ® Oo)o
o(}e _ia(l) Oc _%a@) oY _%a(f’) Oc _|_%a(1) ®ad?® Q6+
+%a(1) O d® O +%a(2) Od®eo—dV®d® @ a® o).

It has been also shown [7] that the joint spectrum ™ can be deter-
mined recurrently as the concatenation of two segments 6™ and o™,

(3) oM = §mo o
where
(4) 5(7n) — 15(m-l)

5(M) 5(m) 25(m) @a(m) — %a(m 1) __ gm—1) @a(m).

We have assumed that the operation © is distributive with respect
to the operation of concatenation o, i.e., if

6™ = U Qis
K
then

™ Ve L) o, @a™,
T

Introducing the convention

(@0 B)+(708) = (a+7)0(B+ ),
we may rewrite (2) in the following form:

am_1 2m_ 3

(5) = 27™s+00 U ¢.
iz =0

The joint spectrum 6™ contains the spectrum y of the output distri-

bution
= )P, 4).

LEMMA 1. The coefficients g, of the output spectrum y = (ggy grs---y gom_1)

of the output distribution P(A) = P (Y, Ya, ..., Yy) are proportional to the
first elements of the segments o, namely, if

O = (dk-2'"', d(k+1)'2"'7 ceey d(k+2n_1).2n) ]
then

gk=2ndk.2’n,, k=0,1’...’2m—1.
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Proof. Let ¢ =j-2"+7forj =0,1,...,2"-1;1=0,1,...,2"—1.
Then W,(&, 4) = W;(A)W,;(&) and

2Mm_1 2P
P() =Y P& =D D dym ) WidWi(&).
&} j=0 1=0 &5}
Since
2" ifl=0,

D Wi(a) = Herwi
& 0 otherwise,

we have

2m_1

P(&) = ) dianWign(2)-2" =g; = 2"djn.
j=0

COROLLARY. If P(¢) = 27", then 0 = (1,0,0,...,0)-27" and from (5)
we have

g =2"{27™. 27" 427 "g} = 2™ 4 ¢f)

with € — the first element of the segment ¢;,

g
s ay
(6) o) = 1,,22 @ 0490 ... 0d,
1=1 j=1

where 1,, = (1,0, ..., 0), the 2"-element vector being the identity with respect
to ®, and 1,,-¢; denotes the scalar multiplication of 1, and ;.

It has been shown [9] that the operation ©, defined in the set A
= {dM (j =1, 2,...,2%") of all structures of order n, corresponds to the
logical multiplication in the set ' = {f;} of all logical functions of n varia-
bles. Therefore, the coefficients ¢g; are functions of the coefficients of struc-
tures of functions y; = f;(#,, 4;, ..., ,) and all their possible products
(for 1 =1,2,...,7).

The first coefficient a, of a structure a is just proportional to the weight
of the function f,(x,, #,, ..., ,); clearly,

_ w(fa)

0 — 2n ’

where the weight w(f,) of the function f, is defined as the number of ones
in the truth table for f, (see [6]). In view of the one-to-one correspondence
a<f, we write either w(f,) or w(a).

Since the terms on the right-hand side of (6) of the form

1, (P 0d?e... ©d?)
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denote the zero element of the vector (a'V®a®® ... ©®@), the coeffi-

cients g; are linear combination of the weights of the products oY ®a®? ®
© ... ®a®, Clearly,

k
=2 2'"22 - 0,(d 0a 0 .. @)

(1 =20 42f-1 | 42%71; j =207l 9h-1 | ofkTT),

Let w® (4 =0,1,...,2" 'k =1,...,m) denote the weight of
order k, i.e. the weight of the function f;(=,, #,, ..., 2,) being the product
of & functions

fi,(8) fzz é), eeey J5 (&)
(Ggy gy ooy B = 1,2, s i =920 lpoh-ly | yohl),

Thus the actual numbers of functlons contributing to the product

are determined by the positions of ones in the binary expansion of <.
Thus the synthesis conditions may be formulated as

wh =¢P  (i=1,2,...,2m-1),

Where the ¢; are to be calculated on the base of the prescribed distribution
or, equivalently, on the base of the output spectrum y = (g, g1, ---5 gam_1)-

The weights w{® (i =1,2,...,2™—1) can be determined in the follow-
ing way:

(i) On the base of the first-order coefficients ¢ it is possible to find
the first-order We1gh1:s w{P by the formula

wi) = (g —27™)(—2"-2™7) = (—1)-2"m1 (gD _g-m)
(t=27"14=1,2,...,m).

(i) On the base of the second-order coefficients ¢ we are able to
determine the second-order weights w® by the formula,

Wi = (g —27") 2" (1) 4 () + o)
(¢ =297 ot 4 4, =1,2,...,m).

Consequently, it is easy to extend this idea to the case of the higher-
-order coefficients using the following relationship:

kl")

wi) = (—1)*(g{? —2=m).gnem+k _ ? 2

i

w®H
2m l .'I

(¢ = 2‘1—1 4207l 2%,

Since the weights w; are uniquely determined on the base of the spec-
trum of the output distribution, we have the following
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THEOREM 1. If the input distribution of the transformer is uniform, i.e.
P(&) = 27", and if there ewist two ordered m-tuples of logical functions
{frsfoy oovs fmy and by, by, ...y by > Such that the weights of the corresponding
functions and the weights of all their possible products are equal, then the
probability transformations yielded by these m-tuples are equivalent.

If the set of the weights {w;} (¢ =1,2,...,2™—1) is determined,
the synthesis problem can be defined as finding such an m-tuple of logical
functions fi, f;, ..., fm Which have w{, w’, ..., w(),_, ones in their truth
tables and w{? ones in their logical multiplication for all such possible
products.

These results have been obtained on the base of the spectral method.
In the next section we shall consider the problem again in the discrete-
-probability domain which will give us a deeper insight into many important
questions.

4. Discrete probability analysis. To reformulate the results obtained
in the last section into the discrete-probability language we need the
concept of the generating function developed recently in [9]. Although
it was primarily a method for finding orthogonal expansions of logical
functions, it can be easily extended to the case of pseudo-Boolean functions,
i.e. functions defined on the set

&) = @, ), ..., a0}, where o) —0,1,
with arbitrary, not necessarily zero-one values.
The basic idea of the generating functions may be shortly summarized
as follows. Let H, = {h{} denote the set of functions belonging to the
space L2 (cf. [7]), and let M, = {u{} be the set of orthogonal expansions

of the h;. Any element M e H, can be represented as the concatenation
of two elements s®» and s{*~", where s,, s,¢ H,_,. We have then
hg.n) — sgn—l)os(ln—l)
and
(n—1)
s (g, @5y o.oym,_,) for z, =0
WY = (@, 5y ...y 8,) = zn—l) vomn 1 " ’
8 (@, oy eeuy B,_,) for x, =1.

In other words, if the functions s{"~" and s{*~V are given in tabular
forms, then the function A{™ = s{*Yos{®~ ! is defined as the concatena-
tion of the two tables with x, = 0 for the upper half (i.e. for s,) and with
2, = 1 for the lower half (i.e. for s,). This may be transliterated into the
spectral analysis domain in the following way. Let

Ny = ’l’(h(n))y Oy = '.0(83”'1’), 0, = 'P(S(ln—l)) (0gy 016 M,,_y5 9y e M,,).
If B™ = s{"Vos®Y, then

_ _ df " — — _ -
(7) N = (807N, 87y = Hsi D + s V)0 F(s§D — s D).

L
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Consequently, for any pair (s, s{®~V) of orthogonal expansions
of order n —1 (i.e. of »—1 variables), there exists a uniquely determined
orthogonal expansion of order » defined by the generating function ¢

in (7). Conversely, for any ¢,e.M,, there exists a uniquely defined pair
of expansions of order » —1, namely

(qﬁ”“’, @" ) =97 Ne,) = (£ +¢, g€ —¢'), where ¢, = goe .
Now we can apply the concept of the generating function to the case
of the probability transformer. Consider the equation
o™ = Mo o™,

where 6™ j5 the spectrum of the joint input-output distribution
PUE Y, v, . vey UYp), i.0. 8™ = (P™). Then, representing P™ as the con-

catenation of two segments P{™ and P{™ (note that, generally, P{™
and P{™ are not probability distributions),
Pim — Po B,

and making use of expressions (3) and (4), we have

P (0™) = (8™ 4 8™, ™ — 6f™) = (oD — om0 @ g™, dm=1 @ o),
Since

P = 7 1(6mD _ gD ™) and PM = 1p—l((;(m—l) ®d™),
we have

(8) P™ = (PI [, —fp])o (P 0f,) = P™ (1, —fu)Ofm],

where 1, is the logical function identically equal to 1.

The last expression is to be interpreted in the following way. If
P™=1) 5 the joint distribution of n-4m —1 variables, then its tabular
representation consists of 2™~ segments h;, each of which contains 2"

elements. Thus we have
2m—1_,

_P(m—l) — U hj
j=0

and

om—1_,
(9) P(m_l)fm = L)o (hjfm)a

j=
where
dat
(hjfm)(mu Loy ooy Bp_1) = hj(Byy Tay oo oy By _)) fon (B1, Bgy ooy Bpp_y)

for all possible values of arguments («,, @, ..., @,_,). Thus the distribution
P™ consists of 2™ segments divided into two parts: the first being P™—Y
multiplied by (I, —f,), and the second — P™~? multiplied by f,,; the multi-

plication is performed according to (9). - o .
‘3 v fuenacig :.;
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It is easy to show that the normalization condition for P™ is always
satisfied if only it is satisfied for P™~Y, Let P°(&) = P(£&). Then

PO = P(&)[fiof1],
Pe =P(l)[f_zof2] =P(s)[f1f20f1f20f1f20f1f2]-

It is easy to show by induction that expression (8) is equivalent to

(10) P P& U (fifle e (= 0,1),
where ) .

fji . fz‘ if .77, = 1a

Ylf i g =o.

The output distribution =™ (y,, ¥,, ..., ¥,,) is then easily calculated
by the formula

(11) 2™ = N POE, Y1y Yoy oeer Ym)-
{&}

In the case of the uniform distribution, i.e. P(&) = 27", by (10)

and (11) we have
2™m—1

aMm_3 ., .
(12) ™= 27" _UO w;(fitfiz... fim)y =27 _Uo Vj,
1= =

where v & w;(fiiff2 ... fim) are the weights of minterms of the output
variables y,, Y2y .-y Y- BY & minterm of a set of Boolean variables @, ...
..., &, We mean any expression of the form 712 ... #ik (j, = 0, 1), where
#f! = x, if j, = 1 and &' = %, if j, = 0. These results can be summarized
in the form of the following two theorems:

THEOREM 2. If the input distribution of the binary probability trans-

former is uniform, then the value of the output distribution A™ Y1y Yoy eees Ym)
for concrete values of arguments y1, y32, ..., yim is proportional to the weight

v (j = 277142727 L. -29m7Yy of the function being the j-th minterm
of output variables.

THEOREM 3. In the case of the uniform distribution at the input any two
ordered m-tuples of logical functions {fi,fay .oy fmy oM@ {hyy hay ooy By
yield the same probability transformations if and only if the weights of all
minterms of the output variables are equal, i.e. if

w(fifle... fip) = wRPR ... him).
In order to show that Theorems 1 and 3 are equivalent it is sufficient

to replace each f; in (10) by 1 —f; and perform the straightforward multi-
plications. For example, if m = 2, then

PO = (2711, '_,fl-ﬁ"féj—flfz)o(ﬁ —fif)o(fe _}1f2)o(f1f2).’
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where [2-"] denotes the vector consisting of 2" elements equal to 27",
and 1, is the logical function identically equal to 1.
If m = 3, then

PO = L2711, —fi—f;—fs +hife +ifs+fofs —fifefs)o
0(f1—f1f2—f1f3+f1f2f3)o(fz_f1f2—f2f3+f1f2f3)o(f1f2—f1f2f3)o
O(fys—fifs—fofs + frfafs)o (fufs _f1f2f3)o(f2f3—f1f2f3)o_(f1f2f3)'

Therefore, the output distribution #™ may be expressed in terms
of the weights of the functions f; and their products, namely, for m = 2,

7 = 272" —w, — W, +Wyp)0 (w; — W13) O(Wy — W3 )0 (Wys),
! a4 ,
where wy; = w(f.f;)-
It is.easy to show that the j-th element of the distribution =™

= (ug™, p{™, ..., ufm_) is determined by the expression

gm_y

(13) w=2" D (—1 uf
=g

(j=0,1,...,2m—1;k = 20714207 | jon-ty 0= 2",
It is possible to find a method for determining the weights w; on the
base of the output distribution ™ = (ug, pt1y +++; fym_,); in this case one

has to start with the highest-order weight w,,,  , since w, = pm_, 2"
The (m —1)-order weights are then easily determined by the formula

W™D = (u;+( —1)"w,,_)-2",
and so on up to the first-order weights.

5. Number of solutions. Since the output probabilities u; (j =0, 1, ...
..., 2™ —1) are non-negative, equations (12) and (13) establish conditions
satisfied by an arbitrary m-tuple of logical functions <{fi,fsy--+sfm,
of n variables. The following two e(iuivalent sets of conditions (14)
and (15) are obtained from (12) and (13), respectively:

2Mm—1 ) am_q
(14) Dw(fifl. i =2" = Y, >0,
i=0 j=0
2m_1 . . .
(15) D (—Dhwfd >0 (k=277 4207 4 4207, wf) =2,
k=j \

It is easy to verify that the normalization condition is always satis-
fied by a™ if its elements are determined by (13), since

2M—1 2Mm—1 2m—

2 Hi = Z 2™ 21(—1)1”’%) =1
=0 5=0

k=j















