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MINIMAX ESTIMATION OF A CLASS OF FUNCTIONS
OF THE SCALE PARAMETER IN THE GAMMA
AND OTHER DISTRIBUTIONS
IN THE CASE OF TRUNCATED PARAMETER SPACE

Abstract. We consider the problem of minimax estimation of the scale parameter A in the
gamma distribution (1) with truncated parameter space. We prove some sufficient conditions for
minimaxity in the classes of rational, analytical and other functions and give some examples of
minimax estimators. The results of the paper can be applied to the estimation of the scale

Parameter for the normal, lognormal, Pareto, generalized gamma, generalized Laplace and other
distributions,

1. INTRODUCTION

This paper deals with the pro.blem of minimax estimation of the scale
parameter A in the gamma distribution

ls
(D f(x,s, )= o) x*“lexp(—1x), x>0,
Where leA, 4 =(0, 4g) or A =(Ag, ®), 40=0, s>0, 1, and s are given
Constants; the paper is a continuation of [6]. There are two methods of
investigations of minimax estimators. The first of them uses the simple fact

tha.t if the estimator § is admissible under the loss L(-, -), then the same
estimator is minimax under the new loss

L(, ) =[E,L(, 8] ' L(-, ")

(see [16], Theorem 8.1.1). Thus from the results of [3], [7], [12], [15] and
other authors one can obtain the admissible and minimax estimators for g (4)
= al+b/cA+d under the restriction 1 = Ao or 1€(0, iy), where A4, a, b, ¢, d
are given constants and Ao 2 0. In the same way the minimax estimator for
A" was found by Singh [13], where 7 is an integer and A €(0, 00). A different
approach was presented in [4], [6] and [17]. Using the well-known theorem
of Lehmann (see [91 p. 256), Zubrzycki [17] and Ghosh and Singh [4]
obtained minimax estimators for A=! and A. Their results were generalized
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in the paper [6] which provides a necessary and sufficient condition for the
minimax estimation of A", where r is any real number, r <s/2, and which
gives a few examples of minimax estimators. The authors mentioned above
did not consider the case of two-sided restrictions A €(1,, 4;), where 0 < 4,
< A; < 0. Such a problem requires different methods (see [17], [2], [8] —
estimation of the mean in the normal distribution) and will be the subject of
further investigations.

In this paper we give a few sufficient conditions for minimaxity in the
case of restrictions imposed on the parameter. The Theorem in Section 2
provides a sufficient condition for minimax estimation of any measurable
function g(-) of the scale parameter A in the gamma distribution. In Section
3 there are given examples of minimax estimators in the gamma, normal,
generalized gamma, generalized Laplace, lognormal, particular cases of the
beta and other distributions. Section 4 contains some sufficient conditions for
the weight function under which every estimator is minimax or, more
precisely, every estimator has the unbounded maximal risk.

2. SUFFICIENT CONDITIONS FOR MINIMAXITY
What we need first are some preliminary lemmas.

Lemma 1. Let f(y) = I'*(y—r)/T (y—2r)T'(y), where y > max(0, 27) and
reR'. Then () is strictly increasing.

Proof. Since f'(y) = f(y)[Inf ()], it suffices to show that
[nf(») >0 for all y> max(0, 2r).
This is equivalent to
W(y-n-y»-y(y—2r)>0, where y(y)=[Inl(y)].
Note that from (8.363.3) of [5] we obtain

X 1
)=y () =Y, (y )—( x—) Z

k=0 +k x—l—k

x+k) (y+k)
for all x>0 and y > 0. Consequently,
© 1

W=-N=YO=0=h0) = ¥ o >

This completes the proof.
~ Let us write

M
{2 2 biala(+y1"* M M (utitk, a(l+y))?
(2  F(y,q =-=tk=m :

M

M
Y Z cala(+yPM " T(u+i+k, a(l1+y))

mi=

9

N
k=
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Where y > ~1,a>0, cyu #0, u > max(2M, N+ M), m <M, n <N, and
G=m,.. ., M) are chosen such that the denominator takes a positive value.
Here

T(x, y) = [w*™Texp(—w)dw.
y

LeMMA 2. There exists a constant C > 0 such that F (y, a) < C for each
y>-1.

Proof. Observe that F (-, @) is continuous on [—1, oo[ and for all
Y1> =1 and @, > 0 there exist y, > —1 and a, > 0 such that_

F(y,,a;)=F(y;,a,) and a; (1+y1) = a(1+y,).
Then it is sufficient to show that

lim F(y, 1) < co.
y—w

We prove that
lim F(y, 1) = 0.
y—w

If we apply de L’Héspital's rule 2(M—m)+1 times, then the denominator of
(2) takes the form

LL4+yM* =t o [(14+))2M**~ 1 exp [~ (1 + )],
Whereas the numerator is a sum of expressions of the form
G(1+y*TI'(u+B, 1+y)I'(u+D, 1+y),
G4y I'(u+B, 1+y)exp[—(1+y)]
and
G(l+yytexp[—2(1+y)],

Where 4, B, G, D are some reals, u+B >0, u+D > 0. Let us multiple the
Mumerator and the denominator by (1+p)! 7" 2Mexp(1+y). Now observe

that if Y tends to infinity, then the denominator tends to one, whereas the
numerator, as a sum of expressions of the form

G(l+y)*T(u+B, 1+y) ' (u+D, 1+y)exp(l+y),
'G(1+y)AF(u+B, I+y) and G +ytexp[—(1+y)],

converges to zero. Hence

lim F(y, 1) = 0

y—wo

and the proof is completed.
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Let us write _
A= {yeR'|y=Ax, AeA},

@ =0 for A€(0, Ao), @ = o for A€(do, o) and @ =0 or oo for A€(0, ).
The following conditions are required:

ConpiTioN 1. There exists a function h: A =10, o[ such that for all
a >0 we have

@) 0< ?gz(l)h(/l)l"‘lexp(—al)dl <o,
0 ;

(i1) 0< j|g(l)|‘h(/1)}.’+""1exp(—aﬂ)di <o fori=0,1,2,

where p€eP, se€§, P c R}, S < 10, oof, and P, S are some arbitrarily chosen
sets.
Conbrtion 2. There exist functions B;: 10, co[ > R* (i =0, 1, 2) such that

(i) | Bz(a) B%(a)/By(a) for all a >0,
(1i) 11m B,,(a)g (u/a)h(ufa) = A,(w) for k=0,1, 2,
where A, (k = 0, 1, 2) may be an arbitrary function, Ay # 0 and neither of Al

and A, is equal to a constant.
ConpiTioN 3. We have

im0 b}

where ¢ =p—1 for k=2 and q=p+s—1 for k=0,1, 2.
Now we write

w w -
Fi(y,a,p)= | g’(a(1+y))h(a(1+y))w' ?~1exp(—w)dw,

Aa(l+y)

{ J g( L )h( w )Ws+p_lexp(+w)dw}2
F,(y, a, p) = —21*» a(l+y) a(1+y)
( w )Ws+p—1exp(._w)dw \
(1+y)

k u a0 .
h(z)uqexp(-u)du = | Ay (wulexp(—u)du <o,
: 0

b}

"at+n

and F(y, a, p) = F(y, a, p)—F,(y, a, p).
ConpiTiON 4. We have

© 5—

asp o (1+ )‘ P

8

-1
ea P andy = [phim B @ F (. o, D).

a-—o
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~ Let X have the gamma distribution (1). We want to estimate the func-
ton u = g(-) of the scale parameter A under the loss L(d, g) =g~ 2(g—d)*.

THEOREM. Suppose that Conditions 1-4 hold. If the risk of the estimator
u* fulfils the condition

[} s— 1
‘—sﬂhmBz(a)F(ya a, p)dy
(3) supR(u*, g(4) < sup 0(1”30 ‘2 ;

Aed

per r(s) Az (wu?™texp(—u)du
0
then y* |s minimax.

Proof. According to a well-known result on the minimax estimation
(see [91, p. 256) it suffices to find a sequence of prior distributions such that
ayes risks of the corresponding Bayes estimators converge to the minimax
sk of u*. Let 4 be a random variable with the density

$(4) = 52().)h(1) Ar—1 exp(—al)(jgz'(/l) h(A) AP~ texp(—ad)di) 1,

where leA. The posterior density of A is of the form
CAIX) = g2 (M h(A) AP Lexp[—(a+x) 4]

({92 h(A) 77" Lexp[~(a+x) A1dA) .
A
The Bayes estimator for g(-) under the loss mentioned above is given by
i(X) = E; (97 ' X)/E, (g™ % X).

Let us calculate the prior risk of the estimator #:

4) R(E, @) = [g~2(4) T[gm)—a(x)JZf(x, 5, A& (D) dxdA
0

A
- ?[Io(x)—-ZI_l(x)ﬂ(x)+1-2(x)t?2(x)] dx.
0

Here

) L(x) = [g() £ (x, 5, HERdA.

A

We note that fi(x) =1 _, (x)/I-,(x). Hence by (4) the risk can be written a
©) T
R(C, @) = [[Io(x) =12, (x)/I-,(x)]dx.
- 0
Applying the formulas (5) and (6) we have

3 - Zastosowanig Mat. 20.1
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N R, u) = sz” {[gz(/l)h(}.)/l“”‘lexp[—(a’+x)/1]d/1
A .

0
(fg(Wh(A) A+~ Texp[ —(a+x) 1] dA
A

)2
B fh(A)2+P texp[—(a+x)A]dA }dx

A

X [I’(s) (g2 (D) h(A A~ Texp(—ad)di] h

4
Using the substitution u = a4 in the integral

{92 (M) h(A) 2~ exp(—ak)di

and y = x/a in the other integrals of (7) we get
ap+s

r(s) { g*(w/a) h(u/a)u?~ ' exp(—u)du

R, )=

X ?y“l {fgz(i)h(/l)/l””"l exp[—a(l+y)A]dA
o -

A

(fg (A 2P Lexp[—a(l +y) A]dA)°

~ [h@A*r exp[—a(l+y)A)dA }dy',

A

This equality, after the substitution w = a(l+y) 4, is equivalent to

0 ,,s—1
R(f,ﬁ)= "y B2(a)

T F(y, a, pdy
0

X[F(S) { By(a)g? (%)h (g)u”"lexp(—u)du]_l.

Aa

Now let us go to ¢ with a and calculate

sup lim R (&, ).

peP a—¢

According to the Lehmann Theorem, if the risk of the estimator u* satisfies
the condition

sup R (u*, g (%)) < sup lim R(¢, #),

Aed peP a-o
then u* is minimax. The proof is now completed.

Now we give explicit formulas for the right-hand side of (3) for the class
of functions g(-). We present the detailed proof only for Corollary 1 since
the remaining proofs are quite similar.
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2.1. Rational function. Let

M

N . __1
g(d) = Z bi)“l(z Cilll) )

i=m
where b, and ¢; are given constants, b,c,, # 0 if 0 <A < A,, bycy # 0 if 4,
<1 < o0, and n, m, N, M are integers, n< N, m< M.
CoroLLARY 1. If the risk of the estimator & satisfies the conditon -

Ir'*(s+ N+ M—2n)
- for 4&(o, o),
supR( (1), 8) < T(s+2(N=n)I(s+2(M—n))

r’(s+m—n)
_I"(s)l"(s+2(m-—n))

for 1€(0, Ay),

then § is minimax.

Proof. To prove this corollary it is enough to show that Conditions 1-
4 hold. In the case A = (4o, c©) we put

h(2) = (cy A™+ ... +cp AM)?,
Bo(a) = GZM, B1 (a) a aN+M, Bz(a) — aZN.

Under the restrictions p > —2n and s+p > —min(2m, n+m) Conditions 1
and 2 hold immediately and we get

AO(“) = cifuZM, Al(u) = bNCMuN+M, Az(u) = b]zvuZN. .
Note that for all a, 0 <a <a,, where a, is a given constant, we have
u

N N
Ba@g? (3 )h(2) = ( busta o < (3 piueaoy
k=n =n

and p+2k >0 for k = n, n+1,..., N. Thus, by the Lebesgue dominated

convergence theorem, Condition 3 also holds. Now observe that, after
applying the formula

(14 ... +x )2 < n(xd+ ... +x2),
We obtain

B,(@)F,(y, a, p) = a2¥ ? %i b [ M_]!by)]“}zuzs“’“‘exp(—w)dw

k
arg(1+y lk=n a(l

N blaZ(N—k) o
<(N-n) _,k___ik_ [ ws+p+2k—lexp(_w)dw
k=n (L™ 2ipitey

N
S(N=n) Y (14y) b2 a2N=0 [ (s+ p+2k).
k=n
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Consequently,
‘ o Vys—l .
(8) lm(l) fa——);:;Bz(a)ﬂ (v, a, pdy
a-0 o _
oays_l hngBZ(a)Fl (y7 a, p)
= t‘; g T dy = b3 T (s)T (p+2N).

On the other hand, from Lemma 2 we get

© s 1
9) lin(l) [ = o B,(a)F,(y, a, p)dy
a-— O
»Y' ' lim B, (a) F,(y, a, p)

a—0
N

r&rp+2NI3*s+p+N+M)
I'(s+p+2M)I'(s+p+2N)

From (8) and (9) we finally infer that Condition 4 holds and

. r2 N
imR(, @) =1— (s+p+N+M)
a—0 F(s+p+2M) T (s+p+2N)
Hence, using Lemma 1, we obtain
“w [ B I(s+p+N+M) 1_ I*(s+N+M-2n)
p>—%n I'(s+p+2M)I'(s+p+2N) B I(s+2(N=n)I(s+2(M—-n))’

which completes the proof in the case A = (4,, o).
Now let A =(0, 4;) and put

h(A) = (Cn A™+ ... +cpp AM)2,
Bo(@=a™, By(@)=a"", B,(a)=a”

The verification of Conditions 1-3 is straightforward. Proceeding as above,
for all a > a, we get

'Bl(a)Fl (y’ a, p)

aig(l+y)

N .
Q(N—n) Z a2(n—i)(1+y)-2£ J‘ Ws+p+2i-lexp(__w)dw
i=n 0

N
S(N=n) Y a®"D(1+y)" ¥ (s+p+2i—1).
Thus
a0 ys— .
55 B @OF 0 a, Ddy = BT () T (p+2n).

a-=w (
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It is easily checked that

N M y(s+p+i+k, a(1+y))}.0}2
{Z L
M M .
n P(s+p+it+k, a(l+y)io)
) E=Zm k;n [a(1+p]He—r

(1+y) (N M Abc|T(s+p+i+k)
ST H(a y) {Z Z :+k 2m }

B;(@)Fy(y, a, p) = —=24

i=n k=m

(1+y)~2n {% flb cklI“(s+p+l+k)}

inf H(a, y) |2, =, itk=n—m
@.yeAd
where
y
Y(x, ) = [u*" ' exp(—u)du,
0
aip(l+y)y W
H(y, a) = [a(1+y))*" ( )w””“lexp(—w)dw
' g a(l+y)
and

= {(a, y}la = aq, y > 0}.
Observe that

inf H(a, y)>0

(y,a)ed

;lnce for every (a, y)ea the following conditions hold: H(a, y) > 0, the
unction H(-, ) is continuous,

lim H (a, y) =c4 I'(s+p+2m)

a—+w

and

H(a, y) = c}y(s+p+2m, a(1+y) Ao)+o[a{l + y)].
Then, by the Lebesgue Theorem, we obtain
© -1

lim

LT (p+2m I (s+p+n+
@ (!‘(T—:')T'GBZ(‘I)FZ(J’sa,p)dy=br2I () (p+2mI'(s+p+n+m)

L(s+p+2mTI(s+p+2m)
Now, an argument similar to the above completes the proof.

2.2. Sum of power functions. Let g(z) g At + ... +q,4™" where q; and

zer(l =1,..., n) are reals, r; <r, <... <r,, and g, and g, are not equal to
0.
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CoROLLARY 2. Suppose that the risk of the estimator 6 satisfies the
condition

(_ I*(s+r,—2ry)
. F(S—ZTI)F(S+2r,,—2r1)
R <
WRROD- ) <Y ra—ry
resyrs—2r)

fOT A= (109 (IJ),

for A =(0, ).

Then 6 is minimax.

Note that in the proof we take h(d) =1, Bo(a) =1, B;(a) = a™", B,(a)
=a""for A = (Ao, ) and k() =1, By(a) =1, B, (a) = a™*, By(a) = a”"! for
A = (0, 4¢). To verify that Condition 4 holds, it is enough to use the simple
fact that, for each x > —1, u+r >0, u+R > 0, there exists a constant C
such that

T(u+r, a(l+x)) T (u+R, a(1+x)
I'(u, a(1+x))

£C

(see the Lemma of [6]).
2.3. Analytical functions. Take

g(’?') = Z q; }'i’ A’ 6(09 10)3
and suppose that, for all a > a,,

(i) gia * P Il (s+p+i) < oo,

s

[=9] [+o]
(i) Y Y gqa P T I (s+p+itk) < oo.
i=n k=n
Here a, is a given constant and ¢q,# 0, n=0, +1, +2, ...
CoroLLARY 3. If the risk of the estimator & satisfies the condition

I'*(s—n)
R )a s 6 € 1"“' ’
PR, &) < 1~ TG =2m)
then & is minimax.
In the proof of Corollary 3 we take h(4) =1, By(a) = 1, B, (a) = a", and
B, (a) = a*". ‘
24. Let g(A) = 1—exp(bA°), where b and ¢ are arbitrary constants.

CoROLLARY 4. Suppose that the risk of the estimator & satisfies the
condition
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I(s+o

" T(s)T'(s+20)
T:BR(Q (4), 8) < r*(s—o

_F(s)F(s—Zc)

for ¢ >0, A=(0, A),

for ¢ <0, A = (A, 0).

Then § is minimax.

In the proof for both cases we use h() =1 if b <0 and h(d) =
€Xp(—2b4°) if b >0, By(a) =1, B, (a) = o, B,(a) = a*.

Remark. If the upper bound for minimaxity is equal to zero (see, e.g.,
Corollary 3 for n = 0), then we must estimate the function g (1) —c, where c is
an adequately chosen constant. Thus, if § is minimax for g(A)—c, then d+c
Is minimax for g(4) under the loss L(d, g) = (g—c)~2(d—g)>.

Remark. If there exists at least one estimator the maximal risk of

which is equal to the right-hand side of (3), then condition (3) is also
hecessary for minimaxity. |

3. EXAMPLES OF MINIMAX ESTIMATORS

In this section we present some examples of minimax estimators in the
gamma and other distributions.
3.1. Minimax estimators in the gamma distribution.

. EXAMPLE 1 (minimax estimation of the failure rate in the Erlang distribu-
tion). Let X have the Erlang distribution, i.., the distribution (1), where s
IS an integer. Then the failure rate (see [16], Section 6.1) is given by the

formula
t&—l /15 (s—l tk k)—l
9N =rpil 2 )

Let us take A = (0, A49) and consider the class of estimators of the form

ts—l

oM =(s—l)!

(n—s—1)Y 5+ ¥ A4, Y5,
i=1

where ¥ = ) X, and X, ... X . are independent and identically distributed
. i=1

(l-l.d.). 'random variables (r.v’s), n> 2. For such estimators the sufficient
condition for minimaxity from Corollary 1 is given by

(10) __E52(Y) Eé(Y) _ I'*(ns—s) S
g*(2) g(d)  I'(ns)I'(ns—2s)
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Denote the left-hand side of (10) by D(A) and observe that

ts—l

D(j) = A2ms+1 [2,41—_—(5_ o

(I"(ns—s— 1)

I"(ns—2s—1)1"(ns—2$+1)) ]
B I’ (ns—2s) tol)|.

Thus there exists a constant A, such that D(4) > 0 for all A€(0, 4,) if and
only if the constant A, has the same sign as

I'(ns—s—1)—T'(ns—2s~1)I'(ns—2s+ 1)/T (ns—2s).

Now we can find the function Ay(4y, ..., 4,) or fixing A, we can obtain the
coefficients A, ..., A, for which (10) holds, but both methods. require
numerical calculations of the function Ag(A,, ..., 4,) and the coefficients for
different constants s, ¢t and n.

ExaMPLE 2. Let X have the gamma distribution (1). The estimator

( “ X+bu2X2+1)a“
s+1

is minimax for g(1) = Aa*/(A—u) under the restriction 4 > i, and the loss
L(d, g) = g~*(d—g)? where a and u are positive constants, b <0, 1, > 0, b
and A, are such that, for all 1> 1,,

1
—~2bA% +ui? [b(2s,+6)—b2(s+1)(s+2)(S+3)—S—_,_—1]

+2b(s+2Qul[(s+ 1) (s+3)b—1]-b*u*(s+ ) (s+2)(s+3) > 0.

Applying the Cardano formulas one can obtain the explicit formula for the
function b(A,).

ExampLE 3. Suppose that X has the gamma distribution (1). The estima-
tor ' :
(20)™ ! [1—exp(—aX)]

IS minimax for (1+a)~1, 4> 0, under the loss L(d, g) = (A+a)*(d—g)* and
the restriction 1 > Ao.

ExampLe 4. Assign g)=q, A"+ ... +q,A", where ¢, and r, for
i=1,..., n are reals, r, <73 <... <r,. First note that the case of g(1) = 1"

was considered in [6], so it is omitted. Put A4 = (0, 2,) and consider the class
of estimators of the form

5(X) = Z iniX_ri.
i=1

Corollary 2 asserts that if the estimator o satisfies the condition
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- rq2 [‘2(s-—r,) i+ _Amiy?
Ea[‘s(X)_,-;q{l I'< [I-F(S)F(S—z"l)](i;q'i :

for all 1 (0 <4 %20), then 6 is minimax. This condition is equivalent to

n

x I"(s—r-—r) ri+r
(11) A Ay g q————2 )
i§1 kgl © 4 I'(s) (

i=1
Ari)z r? (s—rl)
LM TOTs=2r)

forall A (0 <1< 4o). Denote the left-hand side of (11) by D(4) and observe
that if we put 4, = I'(s—ry)/T (s~2r,), then

m F(s—r ri
qil’)(z A g; (;(S)r)/l )

+

3

S F(s—rl)l"(s—r1—~r2)_
s Z_QIqZAZ[ I'(s—ry)I(s—2ry) I:I+O(1)'

Hence, for some properly chosen 4; (i =2, ..., n) and 1,, the inequality (11)
holds if and only if the constant 4, has the same sign as
{[I"(s—rl)F(s——rl—rz)/F(s—rz)F(s—Zrl)]—1}q1 9.

As. in Example 1, the explicit formula for 4; (i =2, ..., n) can be obtained by
using numerical calculations.

- Now we write

1 35+5 142 . ]
R S PO U5 2 T e ~1,2.
S s+1[1+((s+2)(s+3)) ( 1)]’ f=1,2

ExampLe 5. Suppose that X is an r.v. with the gamma distribution (1).
The estimator [(s+2)(s+3)]""q, X>+ 4,9, X is minimax for g(i) = g, A2

+4247" under the loss L(d, g) = g~ 2(d—g)® and the restriction 0 <A < A,
where 1, is an arbitrary constant and either

Az €[Sy, $5] for g¢,4,>0
or
A;€[0, 5,JU[S,, o[ for q,9, <0.
ExampLE 6. The estimator [(s+2)(s+3)] " 'q, X>+A4,q, X is minimax

for g1 472 +q, /1‘1' under the restriction 0 <A < A,, where 4, is a given
constant. Here

Az 6[0, Sl] ) [SZ’ CD[ for 9192 > 0
and

A,€[S,,8,] for q,q, <O,
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and

s+3 1
Ao = 4Az/[(s+3)'4§‘~2s+1 Lt

The attempt to find an estimator the risk of which fu]ﬁlsbtth;1 :(;)t;clllllt;oi
of Corbllary 4 was not successful. In the case A = (0, 4,) w; oest?mator !
minimax estimators, e.g.,, estimators 6* such that, for eac ,

q19;.

supR(4, 6*) <supR(4, d)+e, where ¢ > 0.
A A

(@) h ] d rate g(4) = exp( -—Zt),
ne o -minimax estimators for the. hazar _
0 <el <f; zszdat >1 ()l in the gamma distribution (1) (where s = 1) is equal to
0 )

5*(X) = Sé 3x, (1) +b,

— i i n
where § (t) =1 for x <t and is zero otherwise; a and b are sultably chose
X

constants. The property of ¢-minimaxity follows from Corollary 4 and from
the fact that

- Ir’(s+1)
iin;R(a(X), 1)=1—m.

Note that the estimator §* appeared in the papers [11] and [14].

3.2. Minimax estimators in some other distﬁbution§. In Whr;llt1 fﬁll::m;:rlett (I)S
shown how the previous results can be applied to estimation ,

generalized gamma, generalized Laplace and other distributions. Denote by
G(s, 4) the gamma distribution (1).

i.d v.)s with
3.2.1. Pareto distribution. Suppose that X,, ..., X, ar}el 1.1-d- r.v.’s
the density h(x, a, 4) = Aa*x~*1 0 <a < x < 0. Note tha

Y= Z": In(X,/a;)

has the distribution G(n,

4). Hence one can obtain the minimax estimators
in the Pareto distributio

n. For example, the estimator

SN
R

(see Example 2) is minimax for the moments

E; X* = 2a*/(1~k)
in the Pareto distributio

n under the truncation 1 > Ao (these moments exist if
and only if 1> k) and

the loss L(d, g) = (g~ 1)"* (d—g)%, where Ao is the
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maximal root of the equation
1|
—2b}t3+k/12[—b2(n+1)(n+2)(n+3)+b(2n+6)—n—+—1]

+22k2b(n+2) [b(n+1) (n+3)— 1]=b2k® (n+ 1) (n+2) (n+3) = 0.

3.2.2. Generalized Laplace distribution. Suppose X, ..., X, are iid.
I.v’s with the density

b):J—_exp(—l-icK xeR! k,b>0.
’ 2bI" (1/k) B ) T

It is easily seen that the r.v.

h(x, k

Y=72 X
Ti=1

has the distribution G(n/k, b;k). Hence we obtain the minimax estimators in
the Laplace (k = 2) and normal (k = 1) distributions. For example, in the
case of the normal distribution, the estimator

3 n 2 3 7 2 2 4
01 (V)= —=—[¥ (X,— > +24[ ¥ (X +u
O e Ly, KT AL (e
- minimax for E, X* = 36*+3u202+ 4* and the estimator
12u “ 2 . 2,5
5(V) = —E [V (X,— 2P +224 Y (X,— >+
) = vy, KT +20 A T X+

is minimax for E, X = 12u0* + 442 62+ 45 of N(u, o) under the loss L(d, g)
=g %*(d-g)*> and the restriction 0 < 6, <0 < o, where ¢, is a given
Constant (see Example 5). In both cases

2 [ 6n+10 )”2]
Ael4. = - — .
€l4;, 4,], where 4, n+2|:1 +(—1) ((n+4)(n+6),

Note also that the estimators J, and &, are consistent and asymptotically
unbiased.

3.23. Generalized gamma distribution. Let X 15 +++5 X, be iid. r.v’s with
the density

lod

I'(p/o)

h(x, p, a, 1) = AP® xP~ L exp(—Ax?),

where 0 < x < ©, px >0, A > 0. Observe that Y = ) X7 has the distribu-
. i=1

tion G(np/x, J). Hence we get the minimax estimators in the Maxwell,
Rayleigh, Weibull and other distributions.



44 M. Katuszka

3.2.4. Particular cases of the beta distribution. If X has the density
f(x, p)=px?"' for 0 < x <1 and is zero otherwise, then the r.v. ¥ = —In X
has the distribution G(1, p). Thus, applying Example 3 of this section, we
infer that the estimator (1+ X)/2 is minimax for the mean E, X = p/(p+1)
under the loss L(d, g) = (g—1)"?(d—g)* and the restriction 0 < p, < p < o0,
where p, is a given constant,

3.25. Double exponential distribution. Note that if X has the density
h(x, B, 2) = Apef*exp[ —A(exp(Bx)—1)], 0 <x < o0,

B, A >0 (see [10]), then Y = —1+exp(Bx) has the distribution G(1, A).
Proceeding as above, one can obtain minimax estimators in the lognor-
mal, Burr and a few other distributions.

4. ESTIMATION UNDER DIFFERENT LOSS FUNCTIONS

This section contains some sufficient conditions for the loss function
L, g) =[W(g)] '(d-g)* under which every estimator is minimax, ie,
every estimator has the unbounded maximal risk. Suppose first that besides

of Conditions 1 (ii), 2, 3 and 4 of the previous section, the following new ones
hold:

ConpiTiON 1 (a). There exists peP such that, for all a > 0,

0< ? W(g(A)h(A) AP~ exp(—al)dA.
0

ConpITiION 5. There exists peP such that

0 < lim B,(a) B3(a) | Wl:g (E)]h(g)u"_lexp(—u)du
- a a .

a—p

= \TAZ(u)A3(u)u"'1exp(—u)du,
0

where

420 = im W g 7 ) [Bo (o ).

B3 may be an arbitrary function.

ProrositioN. If B;(a) converges to infinity as a = @, then every estimator
has the unbounded maximal risk.

Proof. Let us change in the proof of the Theorem of Section 2 the
function h(-) by putting

h(d):=Wg(HIh(D)g™* ().
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An argument similar to that of the Theorem shows that
‘ 4] ys-1
lim By (a) { ————1lim B, (a) F(y, a, p)dy
: a—g o (1+y)y7Pas,
limR(¢, @) = .
e I'(s) [ A (u) A3 () uP~ ' exp(—u)du

0

Since lim B, (a) = o0, we have

a—g
IimR(¢, &) = o,
a=e
Which, according to the Lehmann Theorem, completes the proof.
. We now give a few corollaries which hold for some simple functions
g() and W(-).
4.1. Let

M

N
9 =Y b (Y ¢ A

i=m

CoroLiary 5. If M <N for A =(Ay, ) or m>n for A =(0, i,), then
€very estimator is minimax under the quadratic loss L(d, g) = (d —g)>.
In the proof we put
a*M=N  for A =(1,, ),
B3(@) =19 sm-n _
a for A =(0, iy).
4.2. Let g(4) = A", where r is a real, r % 0. Suppose that
L(d, g} = Q(4) A"(d—g)*,
and Q is an arbitrary measurable function such that

inf Q(1) > 0

A>0

and the limits lim Q(4) and lim Q(4) exist.
' 4-0

A—>o0

where hep!

CoroLLarY 6. If 2r+h <0 for 4 =(0,4) and 2r+h>0 for A
= (Ao, ), then every estimator is minimax.

In the proof we use By(a) =a= %" in both cases.

4.3. Suppose that g(2) = 1—exp(b1°), where ¢ is an integer (see Corol-
lary 4) and the Joss s given as in the case 4.2.

CoroLrary 7. If 2¢+h <0for A=(0,4p)and c>0o0r 2c+h >0 for A
0> ©) and ¢ <0, then every estimator is minimax.

- To prove Corollary 7 it is enough to put B, (@ =a %% and apply the
above Proposition.
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