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CONTINUOUS APPROXIMATION
OF TIME-PERIODIC SOLUTIONS
OF A LINEAR PARABOLIC EQUATION

0. Introduction. We consider an approximate method of finding T-
Periodic solutions of the parabolic equation

1 u,+ Au =f,

Where 4 is a linear differential operator of second order in the space
Variables, with time-dependent coefficients. An approximate method based on
the Crank- Nicolson-Galerkin method was discussed in [5]. A similar
Problem was also studied in [1] by using Fourier expansions. In this paper
We start with the semidiscretization method which yields a system of linear
Ordinary differential equations with T-periodic condition. The solution of this
S¥stem is approximated by Galerkin’s method, and a continuous
approximation of the solution of (1) is defined. We prove the existence of the
Solution and give some estimation of the error.

1. Basic definitions and assumptions. All 1he considered functlons .are
Teal-valued. All the derivatives in the sequel are understood to be in the
distributional sense. Let. €  R" be a bounded domain with Lipschitz-
Continuous boundary Q (see [2]) and let T be a fixed’ positive constant. We
asSume the operator A is defined in the cylindrical domain Q =  x(0, T)
and et for any ueH,(Q)

A(x Hhu= — i e (a,,(x t)——)+z a; (x, t)ﬂ +a0(x u.
ij=1 '

Let (x, )e Q. We assume that the coefficients of 4 are
(i) Tperiodic, i.e.

(2)
(X, 4 T) = ay(x, 1), a(x, t+T) = a(x, 0, aolx, 1+ T) = aplx. 1),
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(i) bounded, i.e. |
o (x, D € Ao, a(x, <A, 0<m< o (x, 1) < A,

(ili) symmetric, ie. a;;(x, ) = a;(x, t).
We denote by (-,-) the scalar product on L*(€2). In the sequel we
consider the bilinear Dmchlet form of A:

n 6“ n
(3) a(t; u, v) = Zl (augz 3 )—!— Y (a,-%, v)+(a0u, v).

ij=. Xil  i=1

Let V < H () be a closed liniear- subspace contammg C3(2). We assume
that there exists'a positive constant § such’ that for every ve'V and te(0, T)
the inequality

(4) a(t; v, v) = 6(lv))?

holds. Next, we introduce the following space of T-periodic functions:
- ou
WO, T) = {ueLz(O, V). —eLZ(Q), u(-, T) =u(:, 0)} < H,(Q).

It Is easy to see, by the famous Sobolev lemma, that the set W (0, T) is well
deﬁned Let feL?(Q) be an arbltrary Tpenodlc function. We shall
approximate the solution of the following exact problem:

ProBLem P. Find a function ue W(0, T) such that for a.e. te(0, T)
0
(5) (al;, v)-{—a(t u,v) =(f(-,1),v) for every veV.

2. Semidiscretization method. Let ¥, = V be a finite-dimensional lineal
subspace We approximate the solution of (5) by requiring that u and v in (5)
belong to V,. In this manner we obtain

Prosiem P,. Find a function u,e X = W/(0, T)AL*(0, T: V) such that
for te(Q, T)

(©) ( Ou,,

e v)+a(t up, V) =(f (-, 1), v) for every verl/;,.

Using the method from [3] it is easy to reduce the estimation of the
error to an approximation problem. We have

THEOREM 1. Leét u be a solution'of (5). If (2)+4) are satisfied, then there
exists a positive constant C(u) such that

T .
6[”“—“;:”% < C(w) inf [I flu— ﬁlldeIII(M ia)||3 dt].

ieX 0
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Proof. From (5) and (6) we.obtain for any ve ¥, the equality

(a(u—u,,)
ot

Let 7e V, be an arbitrary function. We consider this equ'alfty with v = (u—u,)
~(u—a)eV,. If for any fixed te[0, T] we put e = u—u,.and n.= u—il, then

We obtain
e Oe ,
T ]+ t; e, =1 = - N » v
(ar,e);ka( e, e (ﬁt'_?)-{_a( e, n)

Using the boundedness of the coefficients of 4 and (4) we get

y v)+a(t; u—u,, v) =0,

ot o’
Next, integrating by parts and using the T-periodicity, we obtain

a 3 69 .
(%, e)+onets < (5o n )+ e

T T g T
5 [ llelifde s — (e, E)dwc J lells il de,
0 0 ] 0

Which by the Schwatz inequality arid theé elementary inequality

: abésa2+z’1;b2 for a,beR, ¢ >0

‘mplies the desired resuit.
Denoting a basis of ¥, by {y;)X., we may write

N

u,(x, 1) = Y, () y;(x).

i=1
It fOll‘ows from (6) that the coefficients kx,- in the above equality are.defined as
z‘Penodic solutions of the system of ordinary differential equations
vl A+ AL D)) = ),
Where |
a(t) = {air (0, 020, ..., an ()7,
A= .{(Uh Uj)}fj%la ‘3'(5) ‘_”"“!;%a(t;;‘éi:.bj)}ff=l’
F@={(fC. 1,00 (£ 0, 02 s (FC, D, 0m))

Some important properties of the coefficients of (7) are collected in the

fOIIOWing \

th LEmMMA 1. Let the biline_ar form (3) satisfy the V-elliptic condition (4). If
€ coefficients of A and the function f satisfy the conditions formulated in
€ction 1, then
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(i) the matrix A is symmetric and positive definite,
(i) the matrix </ (t) has bounded elements and. satisfies the condition

N ‘ : :
(8) Z cfu(r)::é dY & for all EeRV,
& ‘ |

i,j=1
where d > 0 does not depend on t,
(i) (fC, 0, v;)e L*(0, T).

Proof. The first condition is obviously valid because A is Gramm’s
matrix. The boundedness of ./;(r) follows immediately from (2). We prove
now (8). For any e RN we. set

= Z i v;.
=1

For any te(0, T) we have

Z /l_}(r él a(t; z: Z) 2 5“2”%9

i,j=1

whence, using the linear. independence of \v;}, we obtain (8). Finally, for any
te(0, T) we have

llf (x, v (x)dx| < fz(x r)dx" ‘[v (x)dx,”z;

hence

.

¥ J'Tz .
[ F2ydt < lloliZ,,, nfuLz(Q,
0

In the next section we discuss the existence and some approxnmatnon of
the solutlon of (7)

3. System of ordinary dlfferentlal equatlons with Tpenodlc condmon Let
a natural number N be given. Let A R¥*N be a symmetric and positivé
definite matrix and let .</(f) be a function matrix of order N xN with
bounded €lements satisfying condition (8). For the sake of simplicity we writé

/I, = max sup |7;(l, [l4ll.. = max |Z.

i.j 1-0.T ' [

Next, we introduce the followm}, spaces of vector-valued functions deﬁned
on the interval [0, T]:

H"(o T)= w2 [0. T]= RY: v = (o1, 0z, ..., o), e H, (0, T), <i<Nj»
AY©, T) = ‘ve H¥0, T): v"’(O)—v("(T) 0< r——l'
L“’(O, T) = {v: [0, T]— R": v,-eLz(O, T)).



A linear parabolic equation 329

For any vectors «, feR" let

N
@B = Y aib.

The expression

(4, D)oy & f Culr), v(n)ydt

defines an inner-product in L*M(0, T). Similarly, for u, ve HY(0, T) the
Xpression

T r
W, = [ Y, (1), (1)) dt

0i=0

defines an innet- product in H¥(0, T). We denote by || Il, N the norm induced
¥ (-,), n. Moreover, we introduce the seminorm

ol = fj' Z o7 dr} 2.

0i=1
For any acL>*N(0, T) and e HY (0, T) we define

B, 9) £(A (), Qlon— (A% Plons 1 (0) E (F (), @oys

Where ¢ = do/dt and F e L*N(0, T). We formulate
ProsLem Q. Find a function ae L>V(0, T) such that

9 B(a, @) = 1-(¢) for every pe HY(0, T).

This problem is a weak formulation of the system of differential
ations of the form (7) with T-periodic condition.

5 The following lemma glves some important properties of the bilinear
rm B(-, -

Lemma 2. For every ge AY(0. T) we have

W) B(g, @) = dllgllo.n |

(@) 1B, o)f < /2N (|4ll o+l ) lello.wli@ll.n for every xe L*¥(0, T).

Proof. (1) follows from the T-periodicity of ¢, inequality (4), and the
ymmetry of A. Indeed. the symmetry of A implies the equality

1d
<A<p, <p> --2-3;< ®, 0

&0“1 Wthh usmg (8) and the T-periodicity of ¢, we obtain

Blo, ¢) = W( V@, Plon—(A0, Pon = dli¢|lo.~~; A, M = dliollf 5
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The second inequa]ity follows from the boundedness of .«¢;;(t), namely

- T N N
(CAQERIINES Z lo; A;;(1) @l dt < “‘-Qi”wg 2 e Zl |l dt
is1 =

0 i,j=1
< N[l letllo,n llollo,n-

Similar arguments lead to

(Ao, @)o,nl < N\ Al llodlo,nHl6bllo,n

and (ii) is proved.
Thus, the form B(-, ‘) is bounded from below.and continuous. Using
these facts we prove the existence theorem for the solution of (9).

THEOREM 2. If FeL*M(0, T) then the problem Q has a unique solutioh
aeH,(0, T). This solution satisfies

(1) Ad+.9/(t)o = F () in the sense Z'(0, T),

(1) a(0) = a(T).

Proof. The method is taken from [4]. The uniqueness follows from the
inequalities :

”a”on B, o) =1 ,() = ( (P)ozv H?F”ozv”a”om

since for % =0 we obtain « =0. To prove the existence, we consider 2
functiohal B(a, ) with @eH,{0, T) arbitrary and fixed. According t©
Lemma 2, B(-, ¢) is a continuous functional on L*¥(0, T). By the Riesz~
Fréchet theorem we have B(x, ¢) =(x, S@)on, Where the operator -
HY(0, T)— L*¥(0, T) is linear. We show that S(AY(0, T)) is dense it
L*N(0, T). Suppose that there exists an ay LS (Hl (0, T)). Then a, is 2
solution of (9) with vanishing data and, by the uniqueness, we have ag =

It is sufficient to show that there exists a function aeL>¥(0, T) »fq_r
which

(10) (@, S@)on = L,(p) for every <peH 0, T).
By Lemma 2 we get

dllolls.x < B(o, @) = (o, S¢)o~ ll@llo,x lIS@llo.n»
thus

1
”§0”0.N < Sl1S@llo,y-

This means that S is a one-to-one operator and the inverse operator S~
continuous over the space HY(0, T) equipped with the norm |- |lo -
define the functional t: S(AY(0, T))— R by r(Scp) = 1, (¢p). Since

1L (@) < I[#lo. ll@llo.x-
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T IS continuous and T may be extended by continuity on the whole
LM, T). Let t denote this extended functional. Using the Riesz—Fréchet
theorem once more, we get an aeLZN(0, T) satisfying ©(v) = (a, v)o.n for
€very ve L>M(0, T). Particularly, for v = S¢ we obtain (10) and « is the
flesir'ed solution of (9). Setting ¢ = (0, 0, ..., ¢,, ..., 0)T with ¢,e CZ(0, T), it
I8 easy to see that o satisfies (i). From the boundedness of the elements of
</ (t) we obtain
Ad = F(@)— L (H)ae PN, T),
thus ae HY(0, T). Next, for any geHY(0, T) we have
B, @) = (,d( "), ¢)O,N-+(Aas @o,n— (A, “>|(€ = (g;( ) fP)'o,N

and, consequently, A (a (0)—05(7")) = 0. Since the matrix A is nonsingular, we
Obtain (i), |

We are going to approximate the solution of (9). Let Wy be a finite-

difl'lensional_subspace: of AY(0, T). We formulate the approximate problem
as follows:

ProsLEm Q. Find a function fe Wy such that
{1y | "~ BB, @) =1,(¢) for every peWj.

The error estimation of this method ’may be reduced to an

Pproximation problem, We have an analogue of the Cea lemma in elliptic
Problems [2]. | |

THEOREM 3. There exists a positive constant C such that

lle = Bllo,v < C inf [l —ol|; 5.
veWy

 Proof. Subtracting (11) from (9) with pe W, we get B(a—p, @) = 0.
~SIng Lemma 2 we obtain

dlle—pl|2 v < Ba—B, x—f) = B(x— B, a—v)+B(a—pB, v—f)

< Clla—Bllo.w{le— U“1,N»~

In the sequel we restrict our considerations to the case Wy = WP, where
< H, (0, T) is a linear subspace of dimension M. If {¢,}, is a basis of W,
then the basis of W, contains functions y;; of the form

@; (1) - 0 0
=] O b vao=| 0L L wse=|
0 0 @:(1)

for ayy i (1 <i< M). Since

B= Z fij‘pij,
iJ
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identity (11) implies the following system of linear equations:

M N , , |
(12) Y Y LiBWi v =10 (1Sk<SM, 1<I<N).

i= l j=1
THEOREM 4. The system of linear equanons (12) has a.unique solution.
Proof. For any ;&R we set .z =Y #;;y;;€ Wy. By Lemma 2 we have
ij

Z 'IUB('/’;,, i)ty = Bz, 2) 2 d”ZHON = d* Z '15;
£,J

4, Contmuous approximation of the solution of (5). It is evident from
Lemma [ that an approximate solution of (7) may be obtained by Galerkin’s
method described in the previous section. Let fe WV denote a solution of
(11). A continuous approximation of the solution of the exact problem (P) 15
defined by the formula

N
(13) uf(e, =Y Bi(Ov;(x).
i=1

We estimate the error of this solution in the case where Q is a polyhedron iﬂ
R". For this we use spaces of Lagrange-type finite elements [2]. Let |.7,);

a family of regular triangulations of Q. Let V, be a finite-element space 0

'Lagrange-type of order r—1 corresponding to the triangulation .7,. We havé
 Lemma 3. Let ue C'(Q) be a solution of (5) and let u, u,e L*(0, T; H,($2))

for some r > n/2, If Theorem 1 holds, then

f flu—wulide < C(w) h* 2,
0

where h is the diameter of the triangulation .
Proof. Let IT,: V— V, be the interpolation operator corresponding {0
the triangulation 7, (see [2]). This operator satisfies the equality

L, u(-, 1)], = I],,d,(-, t) for every ueC'(Q).
The approximation theorem 2] implies the inequalities

Wtr%Jhm-Mh<CW”mvnm
and .

Ilu,( t)— ”hu,(,f)llo Ch'lur( Dy

valid for all re[0, T]. Hence the des1red estimate is obtained by setting
(', t)=1Ilu(-, t) in Theorem 1. _

Similarly, we can estimate the right-hand side of the inequality in
Theorem 3. We consider a uniform division of [0, T] with the diameter 4%

Let W be a finite-element space of Lagrange-type of order k which
corresponds to this division. We have
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Lemma 4. If ac HY(0, T)n HY, (0, T) is a solution of (9) and Be WV is
aI" approximate solution of (11), then there exists a positive constant C such
that

[l = Bllo.v < C (A |othy 4 1 -

| Proof. The result follows directly from the approximation theorem -
formulated in [2].

_Using these facts we may obtain an estimation of the error of the
Continuous approximation (13).

TueoreM 5. We assume the above lemmas are valid. The error of the
Continuous approximation (13) satisfies
T

[ lu—ufllfdt < Cw)[h*~ 2'Jr(dt)z".]-
0

N |
Proof. Let u,(x, ) = Y a(f)v;(x) be a solution of (6). We have

i=1
T T T
fllu—ufllide <2 [ flu—upliide+2 § |y —ullfde.
0 0 0

The first term of this inequality is obviously estimated by Lemma 3. For the
S€cond one we can use Lemma 4. Namely,

T T N _
[l —ufiizdr = [dt [ 3 (0 fu ), (0] < €4 | T (w~p)d
0

0 i=1 i=1
< Cylla=Bllgn < C; CAUN* |l v
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