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THE PERFORMANCE OF A DIGITAL FSK SYSTEM
WITH ACTUAL DISCRIMINATOR: TIME DISTORTIONS EFFECTS

. L. Introduction. The error performance of a digital FSK system is studied
0 the presence of additive Gaussian noise. We take into consideration the
thtortion effects due to band limitations and the influence of the spectrum shift
In the carrier current channel.

_ In previous investigations ([3], [4], (6], [7], [111, [13]) the ideal frequency
d{Scriminator as a demodulator was considered, and consequently the time
d}Stortions were neglected. In this paper the FSK system with actual
discriminator is analyzed, which enables us to study such distortions. In
Particular, we obtain the formula for the error probability as the function of the
Parameters of time distortions.

The time distortions are the useful parameter characterizing the system
Performance in measurement practice, but the direct formula between the error
Probability and the time distortions has not been known till now.

2. The system. In Fig. 1 we show the essential parts of an FSK data
transmission system with actual frequency discriminator (see [1] and [3]).
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Fig. 1. The block diagram of the digital FSK system
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The data source is a digital one producing every T seconds one of two
symbols: a mark (the logical value 1) and a space (the logical value 0), which are
equally probable. We can assume that each digit is independent of the values of
past or future digits.

The pulse shaper starts producing a rectangular signalling pulse of
duration T at the moment the data source generates one digit. The height of
this pulse depends on the value of the digit generated.

If s(¢) is the function representing the rectangular signalling pulse of unit
amplitude, and a, is the value of the digit generated by the data source at time
(n—1)T (Y), then the input to the FSK modulator at time t is given by

2.1 x(t) = i b,s(t—(n—1)T),

where b,= —-1if a,=1, and b,=1 if a,=0, ie, b, = —2a,+1.
The function x(t) is called a modulating signal.

The output of the FSK modulator is then given by the following
expression:

(2.2) X, ()= Acos[cocpt+ij'x(z)dz+!llo],
0

where A4 is the constant amplitude of the FSK wave, 4w is a constant of
proportionality (it relates amplitudes to frequency shifts), w,, is the unmodula-
ted carrier frequency, and y,, is the initial phase of the modulator at time t = 0.

The modulated signal X, (t) passes through the sending band-pass filter.

The transmitted signal is applied to the carrier current channel, which
shifts the signal spectrum on the pulsation axis w by the value é,_. The noise
interfering with the signal transmission in the carrier current channel is
assumed to be additive and white Gaussian.

The combined signal and noise enter a receiver which consists of
a band-pass filter, a spectrum shift system on the pulsation axis w by the value
kw,,, a frequency discriminator and a sampler. The frequency discriminator is
a zero-crossing type demodulator. It generates a pulse of fixed length z, and
height a, at each zero-crossing (at which the time derivative at the carrier wave
is positive) and integrates the pulse train in a low-pass filter. The combined
signal and noise finally are synchronously sampled at discrete sampling
instants, and on the basis of each sample produce a mark or a space symbol.

3. ]?istortion effects due to the channel (?). In the analysis we made the
assumption that the data source generates from —oo to 0 a sequence of

L .
(') Assuming the data source starts transmitting at time zero.

2 . .
. ( ) In this analysis, the channel means the combination of the carrier current channel, the
receiving filter and the sending filter.
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Identica] digits for which each of digits equals a, and starts transmitting at time

10 the sequence {a,}Y-, of N digits. Let {a,})_,, or shortly {a,}, be

4 sequence generated by the data source, arbitrarily chosen but fixed.
Then the FSK modulated signal S,,(t), by (2.2), can be written in the form

B x (= Acos[(w,, + b, do)t+y,, ] for IT<t<(I+1T,
" | Acos[(w,, + bodw)t + ] for ¢ <0,
Where

1
1=0,1,2,...., N—1, Y b,20for =0,
=1

!
Vi1 = Yot+doT Y, b—AwlTh,, .

i=1

. We assume that both the sending and the receiving filters are com-
Inations of two filters: a low-pass filter and an upper-pass filter with impulse
Tesponses given by the formulas

(3.2) hy(t) = oyexp(—ait)1(2),
(33) h,(t) = Op(t) —asexp(—azt)1(1),

l'espectively, where aj, a5 >0, I(t) = x..,)(t). Then each of the impulse
"esponses d(t) and r(z) of the sending filter and the receiving filter, respectively,
8 a convolution of the functions given by (3.2) and (3.3). Thus the impulse
TeSponse of the combined filters is equal to

B4 d@er() = Birexp(—os 1)+ Byrexp(—ayn)

+ pexp(—oy 1)+ aexp(—as 1),

o 2 o 2
N oy 0 , | %1%
BL={c1+— -1, Br=|- ol IS
oy — 0y Ay — a3

o ot a0y

oy —ay /(o —ah)?’
103

Where

The FSK modulated signal passes through the sending filter, the carrier
Current channel, the receiving filter, the shift spectrum system, and finally
'€aches the discriminator. Thus we obtain the following final form for the
Slgnal x »(t) at the input of the discriminator (as the convolution of the FSK
Modulated signal given by (3.1) and the impulse responses of the above four
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systems (3)):

(33 X, ()= ), [(Prit +Prmexp(—at)]+c,cos(w,t+,)
i=1
—s,sin(w,t+y,) for (n—1)T <t <nT,
where
w, = 0, +bdo, o,=o0,+0d,+ko,,
Bi=Fi+ kay, o =d+ko,,
P2in = Bil2ins  P1in = Bis292in— Pil1in>
q1m Z exp[cx(l—l)T] {(l I)T(cos[wl l(l 1)T+:1’l—1+¢il 1]
A/ a,- +wi-,
__cos[w,(l— DNT+y,+ (p,-,])_cos[w,_ (=DT+Y,_ +2¢0,,_4]
ot + o} o + iy
_cos[w(I-1)T +y,+2¢,]
of +wf ’
gaa= 3, explei—y7y (2L DT ot 0]
=1 VA O/
_COS[CUI(I— 1)T+ll/,+(p,-;])
J o + o} ’
CosQ; = L sing,, = e
! JE +w? . Vo2 +w?
< cos ;,
=D, (ﬁi+2 i
i=1

coquo,,,
JE+a? 2 of +wp )’

‘2 ( sing,, 4B sin2¢;,
i=1 2 o +0)3 lai2+wr% .

The formula (3.5) for X (t) clearly shows how the past information on digits
influences the value of the signal X (D).

(*) We use the following equalities

[xe**cos(bx +c)dx =

xe*cos(bx +c+ @)—
a®+b?

v e**cos(bx +c+2¢),
fe=cos(bx+c)dx = &=

7 2+bzcos(bx+c+¢;o),
a
where sing = —b/\/a’+b* and cos¢ = a/,/a® +b*



Digital FSK system 265

Now we attempt to analyze the zero-crossings of X o).
Note that X »(2), as the signal of carrier frequency, may be represented in
the form

(3.6) X,(6) = A (cos[wt+¥,.  +o,0)],

Where IT <t < (I4+ )T, i=a,,,, v, = w,+b,, 1 Aw, A,(t) is the envelope of the
Signal, and y,,,+¢,(¢) is the phase of the signal.

A,(¢) and ¢,(z) depend on the channel characteristics and on the entire
fata sequence transmitted by the data source. Hence in the channel with
Intersymbol interferences we may compute A,(t) and g@,(t) only by a digital
Computer,

Let ¢, be the n-th zero-crossing of X o), ie., t, represents the value of
t such that

(3.7) wit,+ Y+ @, ft,) = —1/242m,x,

Where each of the integers [ and m, depends on n. Hence we obtain (4)

(38) f = _n/2+2mnn_l/’l_¢pn
n . )

1

Where ¢, = ¢,(t,).
In the next section we attempt to analyze the zero-crossings of the
Combined signal and noise. .

4. Additive Gaussian noise. Since the additive Gaussian noise n(t) has been

and limited by the receiving filter, at the input of the discriminator we can
aisllme that it is a narrow-band Gaussian noise with zero mean and variance
%. Thus the noise at the input of the discriminator can be represented by

@1 n,(t) = B,(t)cos[w;t + o, ()],

Where IT <t < (I+1)T,i=a;,,, and B,(t) and u,(¢) are the envelope and the
Phase of the noise, respectively. We made the assumption that the sig-
na-l_‘tO-noise ratio at any instant ¢, defined as the signal power divided by the
Dloise average power, ie., AL(1)/(262), is large. Then the input to the frequency
discriminator after adding the noise is

(4.2) : Sy(t) = E, () [cosw;t+ ¥, ()],
\~_

th (*) In the absence of the transmitting filter and the receiving filter, for the zero-crossings from
i ¢ Ith interval (I-1)T, IT] we have the equality ¢, =0 and the integers m, in (3.8) are all
Dtegers from the closed interval on the endpoints:

. (U=DTw+y; 5 . (ITCUI'H//z 1
entier| ————+-— and entier{ ————+-—|.
2n 4 2n 4
) If the above filters are present, then the zero-crossings, lying near the above-described ones if
¢ filters are ignored, can be casily found by a digital computer from (3.5).

. 3.
-Zastos, Mat. 20,2
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where IT <t < (I+1)T, ¥ ,(¢) has a Gaussian distribution with mean ¢, + @,(t)
and variance 6Z2/A}(t) (see [5] and [12]). Let Y, be the n-th zero-crossing of
§,(1). It is easy to establish the equality

@43) @Y, + ¥, (Y,) = —n/2+2m,x.

Hence Y, is a random variable which has a Gaussian distribution with mean ¢,
and standard deviation g, equal to
a

4.4) 6, = yy (t:)cui'

Setting
8/2

—— 1
A? = Al(t)=lim = [ AZ(t)de,
000V —9/2
we can write ¢, in the form

(4.5) G

A
" A(t)wn/2S/N
where S/N, called the signal-to-noise ratio, is a ratio of the average signal power

to the average noise power at the input of the discriminator, ie., S/N = A2/(262).
Consequently, each of the random variables ¢, defined as

(4.6) g, =Y ~t,

has a Gaussian distribution with zero mean and standard deviation o, given by

(4.5) with i = a,,. Obviously, we can assume that the random variables {s,,}
are all independent of each other.

5. Actual frequency discriminator. Using the variables {¢,} defined in (4.6),
we can write both the signal and the noise at the output of the pulse generator
of the discriminator as follows:

N

(5.1) S.(0)= ) ag(t—t,—¢,),

n=1
where a is the amplitude, g(t) is a rectangular pulse of duration z,, ie., g(t)
equals 1 for 0 <t < z,, and 0 otherwise.
Next, the output of the discriminator is given by the expression

(5.2) $,(t) = S, () h(s),

where h(t) is the impulse response of the low-pass filter of the discriminator. We

now attempt to analyze the expectation of S,(#) and the standard deviation of
S, ().

S.1. Expectation of the signal at the output of the discriminator. From (5.1)
and (5.2) we conclude that

N

(5.3) S0 =3 a [ glt—t,—e—u)h(w)du.

n=1
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For simplicity of the notation, let the function g, be defined by
(54) W= | gv—s—u)h(u)du,
Where weR, ¢ >0, ¢ is a Gaussian random variable with zero mean and

Variance ¢2. Then the expectation of S,(t), denoted by X (f}, can be written, by
(5.3), as follows:

N
(5.5) X())=a Eg,(t—t,).
. n=1
It is easy to check the equality
(5.6) Egw—¢} = ¢(E) —¢ (W _ZO)’
o o
Where

¢(x) = _xoo lznexp(—y;) dy.

Consider the function h defined by

- a’te™ for t >0,
) hlt) = {0 otherwise.
Then from (5.4) and (5.6) we obtain
(5.8) Eg,w) = 4,W)— A4, (w—z,),
Where

40 =9(7 )=o)

—[a(w—o?¢)+ 1]exp [ —a (w—?)]qb(w —Gaza).

SubStituting this into (5.5) we see that the expectation of S,(t) is

N
(5.9) X@t)=a} [4,0-t)-A, (t—t,—z)].
n=1

From (5.9) we notice that the value of X(¢) at time ¢, given {a,} and S/N,
depends on the initial phase i,. Let X(t) be the average expectation which is
obFained by averaging X(f) with respect to y,. If we assume that v, is
Uniformly distributed in the interval between 0 and 2n, then

(5.10) f@=i?mww-
0

girst we compute X (¢), denoted by A;, when each of the digits generated by the
ata source has the value i. Note that, even in this case, X (f) changes in time
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because of the integration of the pulse train in the low-pass filter of the
discriminator. From (5.5) and (5.10) we obtain

2 1 ©
(5.11) A = aI:j o X Eg(t—tn—sn)dn,l/oil*h(t),
) 0 n=—w
where, in the formula (3.8) for t,, , = ¥, m, = n, each of ¢, /w; = Ay and
g, = o is independent of n (for ease of calculation we assume that in this case
the data source generates digits from —oo to o).
The integral in (5.11) is equal to

2 1 o] t—tn I x2
fﬂ )IED) GXP(——)dxdlllo

2

n=—-cwt—ty,—zq 0 n 20
w (m+1)T;+4 t— 2

w; L | X Zg

=5 ] [ exp| —5— Jdxdu = —,

J'cn=--co nT;+4n t—u—zo 0 2n 20

where 4n = (—n/2+ AY)/w; and T, = 2n/w,. Substituting this into (5.11) we
obtain

5.12 =y
(5.12) A, .

In general, given {a,}, X (¢) with a very good approximation can be written
in the form

(5.13) X(t) = p(t—IT)A, +[1—-p,(t—IT)]A,,,,
where te(IT, (I+1)T], and

0
P.(¥) = [ h(x—u)du = (1 +ax)exp(—ax) for x > 0.

Let 6(X (2)) be the standard deviation of X (t) (from X (1)) defined as follows:

(5.14) o(X () = fi(x(t)-x—(t))m%.

As may be seen in Fig. 2, X(¢) has a uniform distribution (an approximation of
course). Thus

(5.15) max (X (1)— X (1) = /30(X (t)).

¥o

5.2. The variance of the signal at the output of the discriminator. Let ()
denote the variance of the signal at the output of the discriminator, ie.,
0*(t) = 6*(S,(2)). From (5.3) and (5.4) we obtain

(5.16) oc*(t)=a i [EgZ.(t—t,)—(Eg,, (t—t,))*]-

By (5.8), it is sufficient to find the first term in the brackets of (5.16).
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It is easy to check that for 0 < z <z, the following ¢qualities hold:

Elg(w—e—u)glw—s—u—2)] = qb(%)—a&("‘“z),

o
3. — — -
o1 E[g(w—s—.u)g(w—s'—uﬂ)]=¢(5—“i:i—z)—¢(“aw).
Consequently, after easy computations we get
EgZ(w) = oj? ? E[gw—e—u)g(w—e—2z)]h(w)h(z)dudz
=T [qs(E:_WLZ_O)_¢(“‘W+Z)]h(u)h(u+z)dudz
0 —~w a G
(T [cp(utz—o—:z)—qb(u_w)]h(u)h(u—z)dudz
0 - o o

2
—w u—w+z 0 T 20

Zo ® wu—w+zo | y2 :
=[{ : exp(-——) h(u)h(u + z)dydudz
0

Zo ® u—wtzo—=z

10

=_}° ! CXP(—ZLC;){ T on@[ | ( hw+odz]dudy

g 2TC y+w—2z0 y+w—u-zq

2 *
exp ( —5%5) h(u)h(u — z)dydudz

c./2n ytw—zo y+w-—zp

=j; ! exp(—i};—zz){[ y}w h(u)du][ Y';_W h(x)dx]} dy

1 y?
= —— —_——— —H - 2 d ’
I Jznexp( 202) {(HO+wW—HO+w—z)]*}dy
Where H(y) is the function defined by the formula

’ y

Hp) = | h(u)du.

For h(t), given by (5.7), H(y) is equal to 1 —(1 +ay)exp(—ay) for y > 0, and
0 otherwise. Hence we obtain the following final form for Eg2(w):

(5.18) Eg2(w) = B,(w)— B, (w—z,)—2G,(w),

Where : '

9.2
B_(w) = exp(—2aw+ 20'20:2){00: {o(w—20%0)+2]f (W :G a)

+[1+2a(w—2aza)+a2(w—zaza)2+a2a2]¢(w—262a)}

c
+ exp(—oaw) {—- 20af(w _Jza)

o
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—2[a(w—o20)+1] ¢(“’ —G"z“)} +¢ (g)

. ey 5
Go-(w) = eXp( — ZCCW + 202a2 + GCZO) {a’a [a(w__ 20.2a) + 2] f(L%___O_-.E)

+{o?® +1—0zy+(w—202a)(20—a?z,)

+o2(w—202%)%] ‘f’(—“—w —fo~ 262a)}

o

22 w—zoeaza)

+exp(—aw+62 ){—aa[1+exp(azo)1f( S

+ [azpexp(az,) —explazy) — 1 —o][ 1+ exp(azy)]

y (w_aga)¢(£:z<;—_ﬂz°f)} N ¢( w—;zo),

f(2)= 1 ex (mé)
_\/z_n p 2 .

Substituting (5.8) and (5.18) into (5.16) the following final form for o2(¢) is
obtained:

N

(519)  o*() = Y. {B, (t—t,)~B, (t—t,—2z0)—2G, (t—1,)
n=1
- (Aa"(t - tn) - Aa,.(t - tn))z} .

In order to obtain numerical results, the expressions obtained in this
section are evaluated for the special case. The FSK system was operated at
1200 bits per second.

Both the sending filter and the receiving filter are a combination of
a high-pass filter and a low-pass filter, each of them has a slope 6 dB per octave
and the limit frequencies 1100 Hz and 2300 Hz, respectively. The low-pass filter
of the discriminator has the slope 12 dB per octave and the limit frequency 800
Hz. It is assumed that the data source generates from — oo to 0 the 0 digit and
starts transmitting at time zero the sequence {1, 0, 0, 0, 1, 0,...}.

Figs. 2a and 2b show curves for the expectation X(f), the average
expectation X(f) and the standard deviation o(f) of the signal S,(t) at the
output of the discriminator for S/N equaling to 7 dB. The curves are plotted for
bits with sign change in comparison with the past bit.

In Fig. 3 the standard deviation ¢(f), which is averaged over the initial
phase, is plotted as a function of the signal-to-noise ratio S/N.
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Fig. 2. The expectation, the average expectation and the standard deviation of the signal at the
Output of the discriminator when S/N = 7dB, 8, = Orad/s, M is a threshold, the sequence of digits
generated by the data source from time zero is equal to {1, 0,0, 0,1, 0,0, 0, 1,...}
(a) for 5-bit, (b} for 6-bit
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Fig 3 Dependence of the standard deviation of the signal at the output of the discriminator on
the signal-to-noise ratio S/N
6. The error probability as a function of the signal-to-noise ratio. Let M be
4 decision threshold. Since the discriminator is adjusted to demodulate the
Signals, which are not distorted by a pulsation shift 5,, we have

M=% _5).
2n
The detection of the digit a, is clearly based on the output S,(t) of the sampler
At time ¢ = T, =nT+T/2+ AT, where AT is a constant time delay of the
transmission. AT is produced by the discriminator. That is,
we decide a, =0 if S,(T,) > M,
we decide a, =1 if S,(T) < M.
€ probabilities of a false detection, given V¥, {a,} and a, = 1 or q, =0, are
Ctermined by the following expressions, respectively:
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Pr[error | Y, {a,},a, = 11 =Pr[S,(T,) = M | ¥,, {a,}, a,=1],

1 prierror | Yo, {a,},a, = 01= Pr[S,(T,) < M | o, {ay}a, = 0.

Consider the signal S,(t) in the form
(6.2) Su(t) = X(6)+&(),

where &£(t) is a function depending on the noise. Note that the spectrum of the
wide-band signal S_(¢) at the input of the low-pass filter of the discriminator is
far more wide than the band-pass of this filter. Then, following Levin [5] (p-
301), for each ¢t the distribution of the random variable S,(t), and consequently
(1), can be considered to be approximately equal to the Gaussian distribution.

Thus, the error probabilities given by (6.1) may be rewritten in the form

T 1 _(x—X(T,.))Z]
La(n)ﬁexp[ 2071y ™

Pr[error] | Yo, {a,}, a,=0] = _[ (—tﬂj—;')—)z—:ldx,

o a(T)\/ﬂ [_ 262(T;)

and, defining erfc(x) = 1 —¢(x), they are equal to

Pr[error | ¥, {a,}, a, =

(6.3)

X(T)-M

(6.4) Pr[error | ¥, {a,}] = erfc [L%%]
By (4.5), the probability of a false detection expressed by the formula (6.4) is
a function of the signal-to-noise ratio S/N defined as previously.

Substituting X (7,) and o(T,) from the formulas (5.9) and (5.19), respect-
ively, into the expression (6.4), we see how past information digits and the
initial phase ¥, (°) influence the probability of a false detection. Averaging the
expression (6.4) over all y, and {a,} we obtain the error probability.

Averaging over all data sequences and initial phases is a more formidable
task and is not of much practical interest. We find an upper bound of the error
probability.

The numerator of (6.4) can be written as follows:

X(T)—M = [X(T)-X(T)]+[X (T,)— 4, 1+[4,,—M].
Then we obtain
(6.5) Prerror | ¥, {a,}, a, =

{(azo/Zn)[Aw+(1 21)6]—|X(T) A +(1=2iX(T,)— X(T))}
o(T,)

(*) Note that in the FSK system with ideal discriminator the probability of a false detection
is independent of the.initial phase (see [7], p. 873).
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Note that in (6.5) only (X (T,,)— X (T,)) and o (T,) depend on y,. By a numerical
search we see that the upper bound of the error probability over ¥, is one
order of magnitude greater than the error probability averaged over ¥, (this is
an approximation of course), and it is equal to
(6.6) sup Pr[error | {a,}, a, = i]
Vo
(azo/2m) [+ (1 ~2),,]—|X (T,)— A} —sup| X (T,)— X (T)|

= erfc Vo
a(T,)

Thus, the upper bound of the error probability with respect to ¥, and {a,} can
now be calculated by the formula
(6.7)  sup Pr[error | a, = i]
Vo.{an}
(azo/2m) [Aw+(1 —20)3,] —sup X (T) — A — sup| X (T,)— X (T,)|
= erfc {an} Yo
o(7,)

The above expression enables us to calculate the upper bound of the error
Probability given by the expression

sup Pr[error] < sup Pr[error | a, = 0]+ sup Pr[error | a, = 1]
"’0!{“”} WO'{an} 'I’O!{aﬂ}

and, consequently, the average error probability can also be approximated.

6.1, Concluding comments. In this section we illustrate important conclu-
S1ons from the obtained formulas on the error probability. In order to obtain

(@) 10-1 b) 10
10° ' 102
1073 = 1079
o
o .
£< 10"'\ (0=5 £% 10
N D L&
&5 8§
31075 N 84 10°°
\} =6 a® \m=6
’Eg 1078 (, EE 10-6
8§ =7 S8 7
: g 10 o% 10
.-~ - u'U
°% 107° 5 > 107® -
‘.".-D =8 £ 0 - =a in=
Euﬂo‘g"e\ s Ml
g \ \ &"- n=7
gEw” 50 10"
s 10
10-11 10—1‘!
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Fig. 4. Probability of falsely detecting the a, digit for {a,} = {1, 0,0,0,1,0,0,0, 1,...}
(a) the average with respect to ¥, (b) the upper bound with respect to ¥,
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numerical results, the expressions for the error probability averaged over ¥,
and the upper bound of the error probability are evaluated for the special case
described previously. It is assumed that the data source generates from — oo to
0 the O digit, and starts transmitting at time zero the sequence {1,0,0,0, 1, 0,
0,0,1,0,0,...}. The results, as functions of the signal-to-noise ratio S/N, are
plotted in Figs. 4a and 4b.

As may be seen in Figs. 4a and 4b, the probability of falsely detecting the
a, digit depends not only on the past digit a,_, but also on the digit a,_,. At
the change of the logical value, the probability of a false detection increases by
at least two orders of magnitude.

In Figs. 5a and 5b the probability of a false detection of the 0 digit, the
1 digit and the error probability, given 6, = 0 rad/s and J, = 120% rad/s, are
plotted. For the zero spectrum shift ,, the difference between the probabilities
of a false detection of the 0 digit and the 1 digit is small and approximately
equals one order of magnitude. This difference increases fast with the spectrum

shift &, increasing.
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Fig. 5. Probability of a false detection of / — the 0 digit, 2 — the 1 digit, 3 — the digit for
{a,}={1,0,0,0,1,0,0,0,1,...}
(a) the average with respect to ¥, (b) the upper bound with respect to ¥,
6, =0 radfs, ----- 8, = 1207 rad/s

As may be seen in Figs. 6a and 6b, the spectrum shift d,, influences
strongly Fhe performance of the system. Taking into account the result
obtained in the next section and comparing the error probability for several

values of §,, plotted in Fig. 6b, and the experimental results included in [9], we

see that the theoretical results obtained ‘in this paper and the experimental
results are conformable.
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transmission :

7. Time distortions at the output of the discriminator. The error probability.

1.1. Introduction. First we give some basic definitions (see [8] and [14]).
Xo(f) and x,(t), called the reference standard signal and the real signal,

Let
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respectively, be signals generated in the receiver consisting of a train of pulses,
each pulse having the amplitude either 4 or 0 depending on whether it
represents a mark or a space. Such a signal generated by the data source is
called the standard signal and denoted by x (t). The time moments at which the
signal changes the value of the generated digit are called characteristic moments
of the signal. The difference between the k-th characteristic moments ¢t,, and tok
of the signals x,(t) and x,(t), respectively, is called the k-th elementary time
deflection 9, of the real signal x,(f} with respect to the signal x,(t), i€
3 =t —to The elementary time deflections divided by T are called elemen-
tary time distortions of the signal x,(t) with respect to the signal x,(t).
Next, we analyze various time distortions at the output discriminator.

7.2. Bias distortions. Let X,(t), given J,,, be the real signal reproduced from
the average expectation X (¢) of the signal at the output of the discriminator. If
0, = 0, the signal X (¢) is called the reference standard signal and denoted by
xo(t), in this case X (¢) is denoted by X°(t). The discriminator introduces a delay
of transmission by the constant value AT. Thus the signal x,(t) is the shift of
the standard signal x,(tf) on the time axis by the value AT

The elementary time distortions of the signal x_(f) with respect to the
signal x,, bélong to the class of bias distortions (see [8]-[107]). These distortions
follow from the spectrum shift &,

Let & be a constant satisfying the following two conditions:

sgnd =sgnd, and |§|=|4T—D,,|,

where D)y, and AT represent the values of t such that X(D,)= M and
X%(AT) = M (see Fig. 7). Then the bias distortions are a random variable
which equals é; or — 5, with equal probability, where &, = §/T.

In Fig. 8 we show a comparison of the signals x,(t), Xo(t) and X,(t), and
consequently the time deflections x,(z) with respect to x,(t), corresponding t0
the bias distortions. It is easy to establish that for the parameters D,, and AT
the equalities

pa(A T) = 23 pa(DM) = (Aw+5m)/(2Aw)
hold, which for h(t) given by (5.7) imply

Adw+9,
24w

(7.1)  (1+adT)exp(—adT) = 2,. (14+aD,)exp(—aD,,) =

The value_s AT and D, from the equations (7.1) have been found by numerical
computations by a digital computer. Hence an approximation is now found-
Note that for |d] the following approximate equality holds:

-1

(7.2) 8 = XO—X (t)) dX (t)

t=AT
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Fig g, Comparison of the signals: the standard signal x,,(1), the reference standard signal x,(t),
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15..., 8, — time deflections corresponding to bias distortions at the output of the discriminator

From this it follows that, for h(z) in (5.7), 6 = 8,/C, and
(73) 5s = 5m/(C1T)’

Where C, = 2exp(—adT)— ljadw.
The formula (7.3) enables us to compute with a very good approx1mat10n
the vajue of J.. In Fig. 9 the absolute value of &, is plotted as a function of 4,
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Fig. 9. Dependence of the absolute value of the bias distortions on the spectrum shift in the
carrier current channel
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7.3. Dynamic time distortions. The elementary time distortions of the signal
x,(t), reproduced from the signal X (t), with respect to the signal X_(¢) are called
dynamic time distortions. These distortions are produced by the actual
frequency discriminator, as the effect of integrating the pulse train by the
low-pass filter. Similarly as in paper [12] (pp. 358 and 359) we see that the
dynamic time distortions have a uniform distribution, which is symmetric
about zero with the standard deviation o, = ¢(X(®))/(C, T).

7.4. Stochastic time distortions. The elementary time distortions of the
signal reproduced from the signal S,,(¢) with respect to the signal x_(t) are called
stochastic time distortions and may be approximated by the Gaussian truncated
distribution (similarly as in [12] (pp. 358 and 359) with the standard deviation
equal to g, = o(T,)/(C,T). Such distortions follow from the presence of the
Gaussian noise in the carrier current channel.

1.5. Error probability. Thus we see that the time distortions at the output
of the discriminator are the sum of three random variables: the bias distortions,
the dynamic time distortions and the stochastic time distortions, which are all
independent of each other. Using the formulas for the parameters of the time
distortions &, o,, g,, previously obtained, one can write the formula (6.7) for
the upper bound of the error probability in the form

sup Pr[error | a, = i]
V’D,{an}

(azo/2m)[Aw/C, +(1 —2i)0,T]+/30,T—sup |X(T,)— A{

= erfc {an}
G, T

This formula, given é,, ¢,, 0,, enables us to calculate the upper bound of the
error probability. Moreover, we can approximate the average error probabilitys
which is one order less than the upper bound. Note that the parametef
sup [X (T,)— A4, is by (5.13) independent of the input noise, and it is constant for

{an}
a given discriminator.
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