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ON THE ROBUSTNESS OF PROPERTIES
CHARACTERIZING THE NORMAL DISTRIBUTION

1. Introduction. In 1951 Sapogov [9] proved the robustness for
Cramer’s theorem. Certain types of extentions of this result were inves-
tigated in [4], [10]-[13].

In 1968 Hoang Huu Nhu [1] showed that, with some supplementary
assumptions,

1. sindependence of the random variables X,+ X, and X,—X,,
where X, and X, are independent, implies ¢ /l/lnT/s -normality of X,
and X,;

2. e-independence of

X:%ZnX,- and S2=Z(X,-—X)2,

t=1 i=1

where X, are independent with the same distribution function ¥, implies
¢/VInl/e -normality of X; (¢ =1, ..., n).

The purpose of this paper is to prove analogous theorems:

1. for some e-independent linear and quadratic statistics without
the assumption that the random variables have finite moments,

2. for some quadratic statistics which have e-polynomial regression
on the sum of the random variables with finite variance.

We also obtain similar results in the case of Lévy’s metric.

2. Notation and definitions. Let us denote by Fx(z) the distribution
function and by fx(t) the characteristic function of the random variable X.
Further, let EX and Var X stand for the mean and variance of X, respecti-
vely. Moreover, let

MyX = E[X[®  for some Qe (0, 3].

Let us write

(1) rxy(®,Y) = Gxy(®,y) — Fy(x) Fp(y),
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where Gyy(x,y) is the joint distribution function of (X, Y), q(e, ay, f)
= sup{ec:|fx(t)] > &% for all te (—¢, ¢)}, with 1 > £ > 0, @, > 0 and let

—y Har< —y,
(2) h,(z) = x if —y<a<y,
y x>y,

where y is a positive constant.
The definitions 1 and 2 may be found, for example, in [1]. However,

for the sake of completeness, they should be included here.
Definition 1. A distribution function F is e-normal if there exist m

and ¢ > 0 such that

r—m

sup, F(m)—¢( )}<

g

where
T

d(z) = (2m)" M2 f exp( ——2—)dw.
Definition 2. The random variables X and Y are said to be e-in-
dependent if for every x and y

loxy(2, ¥)| < e,

where ¢xp(z,y) is defined by (1).
Furthermore, let us introduce the following definitions.

Definition 3. We say that the random variable Y has e-polynomzial
regression of order k on the random variable X if there exists a function
7 () such that

k
E(YIX =a) = ) o+ (a),
i=1

where g, # 0 and sup,|n(z)| < ¢.

Definition 4. We say that the random variable X belongs to the family
F(M, O; ¢) if there exists y > 0 such that y and -y are the points of conti-
nuity of I'x(x) and the following conditions hold:

Fx(—y)<e, Fx(y)=1l-—g,
M7 < Varh,(X) < M, Mg(h, (X)) < M,

where M and @ are constants, M > 1, 0 < O < 1.

The constants C; appearing in the theorems below depend on M,
O, n but not on &. This is the reason for considering the families F(M, @; ¢)
with M and @ fixed.
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3. Theorems. Let X,, X, be random variables and let

(3) Sl == a11X1+a12X2, Sz = a21X1+¢122X2
where
(4) Coo < tuln

P23

THEOREM 1. Let X,, X,e F(M, O, ¢) be independent random variables
such that 8, and S, given by (3) are e-independent. If ¢ i8 sufficiently small,
then the random wvariables X,, X, are 6;(e)-normally distributed, where

0,

Vin 1/_.9 .
Remark. If X,, X, are non-degenerate and independent random

variables, then (4) is a necessery condition for the independence of §,
and S,.

For the random variables X,,..., X, let us write

(5) d;(e) =

(6) S = 2 Xh
j=1
(7) So= D apX; X+ Y b X,
where
j=1
and

THEOREM 2. Let X,, ..., X, e F(M, O, &) be independent and identically
distributed random variables such that S and S; given by (6) and (7) are
e-independent. If & is sufficiently small, then the random wvariables

X, ..., X, are 6(c)-normally distributed, where
C
(10) 8(e) = ——.
VInl/e

Remark. If non-degenerate independent random variables X,, ..., X,
are identically normally distributed, then by virtue of the theorem of
Laha [3] 8(X,, ..., X,) and 83(X,, ..., X,) are independent if and only
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if the statistics S3(X;—4,..., X, —4) and §,(X,, ..., X,) are identically
distributed for each A¢ K. The assumptions (9) are the necessery condition
for this case.

Let us remark that if the random variables U and V are e-independent,
then the random variables U and V* are 2¢-independent. Hence and from
Theorem 2 we obtain

COROLLARY TO THEOREM 2. Let

n

8, = Z a;X;,

j=1

jaﬁ #0, Zn:a,j =0.
j=1 j=1

Let X,,...,X,e F(M, 0O, 2) be independent and identically distri-
n

where

buted random variables such that S = ,2 X; and 8, are e-independent.
=]
If & i3 sufficiently small, then the random variables X, ..., X, are d(&)-nor-
mally distributed, where O(¢) is given by (10) with the constant C, instead
of C,.
THEOREM 3. Let X,, ..., X, be independent and identically distributed
random variables with finite variance and let

n n

85 = 2 aijij+ijXj'
i,k=1 j=1

If the statistic S; has e-polynomial regression of order <2 on S

n
(8 = D X;) and if the regression coefficients satisfy conditions
j=1

7
nfe# D ay, W= D ay, nfy= Db,
j=1 Jok=1 =1
(11) Bo

— _
Z“ﬁ—”bﬁz

i=1

>0,

them, for ¢ sufficiently small, there exists a constant C, such that the random
variables X,, ..., X, are C,/VInl/e-normally distributed.

Remark. Lukacs and Laha [6] proved the following theorem:
Under the assumption that X,, ..., X, are independently and identical-
ly distributed random variables, they are non-degenerate and normally
distributed if and only if the statistic S; has polynomial regression of
order <2 on 8 and the regression coefficients satisfy conditions (11).
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4. Lemmas. In order to prove the theorems from Section 3 we use
the well-known method [7] consisting in deduction of certain differential
equations for characteristic functions and the method due to Hoang Huu
Nhu [1] which allows us to use Esseen’s theorem ([5], 20.3A).

To prove the theorems of Section 3 we need the following lemmas.

LemwMA 1. Let X,, ..., X, be independently distributed random variables
and let y; and —y; (y;> 0,1 =1,...,n) be the poinis of continuity of
in(a;) (¢ =1,...,n) such that

Fx(—y)<e and Fg(y)>1—e.

If the statistics T,(X,, ..., X,) and T,(X,, ..., X,) are e-independent
and if
(12) Y, =h, (X)) (=1,...,m),

then
I Y; ¢ =1,...,n) are independent random variables,
II. Y, (¢ =1,...,n) have finite moments of all orders,
IIL. sup|Fx (#)—Fy (2)I<e (¢ =1,...,n),
T

IV. the statistics T,(Y,,..., Y,) and Ty(Y,, ..., ¥,) are (6n+ 1)ec-in-
dependent.

Proof. Properties I, IT and IIT of the variables Y, (¢ =1,...,n)
follow immediately from (12) and from the definition (2) of the function
hn" Thus, in order to prove Lemma 1, it is enough to prove property IV.

Let

A = {(0'17-“7“7:); —y < @ < Yy T ——_17--'7”}7 A’ = R"\A4,
B =Bz:T1—1[(“‘°°’w)]7 D =DU=T;1[(—oo,y)],

where T;'[W] (i =1, 2) denote the inverse image of the set W < R.
Let Px and Py be the joint distributions of the variables X,, ..., X,
and Y,,..., Y,, respectively.
From the definition (2) of h, , we have

Py (A') <2ne, Pyp(d')< 2ne.

Moreover, by virtue of the definitions of Py and Py, for each Borelian
Set W < R™ we have

Py(W) =Py(WNA)-Pyr(Wn4'),
Hence we obtain

lor,r,(#, Y)| = [Py(Bn D) —Pyr(B)Py(D)| < (6n+1)e.

6 — Zastos. Matem. 13.2
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Thus the statistics 7, and T, are (6n -+ 1)e-independent, which com-
pletes the proof of Lemma 1.

LeEMMA 2. If the function f(t) can be expressed by a formula
1 t =
f(t) = exp{—Eaztuimmffli(u)dudz}
0 0

for te[ —q,q], where ¢ = q(e, ag,f), €> 0, a,> 0 and |K(t)| is a function
bounded by ¢ for te [ —q, q], then

2a, ]/ 1
> In— .
1 ]/az—l—c ns

LeMMA 3. Let U, V be random variables ae-independent and let ¢ (u, v)
= @uyyp(u, v) be the funmction defined by (1). If

400 400

= [ [ ve™dp(u,v),
400 +o0

Jy = f fimw“”dqo(u,v),
+00 +o0

Ja= [ [ vre™dp(u,v),

then for each N =1 and for each t
(13) |J,) < 8Nae(1+N|t)) +2N-°(MoU+2E|V|**°),
(14) |J1] < 8Nae(L+N[t))+2N-°(MeU+2MgV),

(15) 1ol < 8N%ae(2+ N [t) 42N °(MeU+MoV+V(MgU)(MgV)),
(16) |Js] < 8N%ac(1+Nt|)+2N"C®(MgU+2MgV).

Integrating by parts we obtain after some calculations inequalities
(13)-(16) (see [1], [8]).

LEMMA 4. If Y, and Y, are independently distributed random variables,
then
(17) Me(Y,+aY,)<2(1+|a|)®max(My ).

i=1,2

If Y,,..., Y, are independent and identically distributed random

variables and if

ma'x{lauly [@yaly o ooy 11y |@pnly 1B1ly ooy Ibnl} <1,
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then

(18) E| ) ,kY,Yk+Zb, '”9 <4n*(MoY,+1)
and "

(19) M@(Z )<nM@

Proof. We shall prove (18). One can prove the remaining inequali-
ties in an analogous way.
Let us remark that

E| 2 05, Y, ¥, + Z’ b Y, < nsE|j:1axn(|17,-|2)+j=r?axn(|17,-l)l“°

7,k=1
< 4n E(Hlax{ly1|2(l+9)’ seey |Yn|2(1+9)7 lY1I1+9, ceey IYnIHO})
< AnPE(max {|Y, 29, 7,049, 1}) < 4n' (Mo Y, +1),

which completes the proof of Lemma 4.

LeMMA 5. If f(t) is the characteristic function of the distribution function
F(x) and if for each te[—Q, Q]

t =
(20) f(t) = exp{ —3o22+imt+ [ [ K (u)dudr}
00
and the fumction K (t) satisfies the condition
(21) IK()|<e<oa® for each te[ —Q, Q],
then

xr—m 1 ¢ 24 1
F(x)—D < —
o

n o2—¢ +7 VoraQ

sup..

Proof. Let
L = L(t) = |f(t) —exp(—4t262+imi)| for each te[ —Q, Q].
By the inequality |¢—1| < |2|exp|2| we obtain

L =exp(—%t20“’),exp(ffK(u)dudr) —1|

< [fth(u)dudz\exp( —%tzoz—}—lij(u)dud-ci)

ct?
< 7611)(—%“(02—0))-
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Hence it follows that

Q
1 1 I

Q
l dt < | — ctexp(—3t2(o®—c))dt QE

/

0

f(t) —exp( —4t20% + imi)
t

2 o2—c¢

0

Thus, from Esseen’s theorem ([5], 20.3.A) we have
w—m)’ 1 ¢ 24 1

<_

su —_——
Pe n© o2—¢ b1 ]/21-;0'Q’

(o]

F(a;)—@(

which completes the proof of Lemma 5.

5. Proofs of the theorems. By s-independence of the statistics
8,(X,, X,;) and 8,(X,, X,) and by virtue of Lemma 1 it follows that
there exist independent random variables Y, (¢ = 1,2) such that Y;
have finite moments of all orders, S,(Y,, ¥,) and S,(Y,, Y,) are 13&-in-
dependent statistics and sup,|Fx () —Fy (#)| <e (¢ =1,2).

If Y, (¢ =1,2) are ¢;/VInl/e-normal, then there exists a constant C,
such that X,, X, are 01/1/111_175 -normal.

Let us show that there exists a constant ¢; such that Y,, Y, are
¢s/VInl/e-normal. Let us remark that multiplication of random variables
by numbers not equal to zero preserves their properties to be e-independent
and e-normally distributed. Therefore it is enough to show that if

(22) U=Y,+Y,, V=Y,+a¥,,

where a < 0 and U, V are 13¢-independently distributed statistics, then

there exists a constant ¢, such that ¥,, ¥, are ¢;/VInl/c-normal. First
we need the following

LeMMA 6. Let U,V given by (22) be 13e-independently distributed
statistics and let f;(t) = fy () (¢ =1,2). If

0 = q(e,%, fl-fz)

and

(23) @, = min(g,, eF),

then there exists a function K,(t) such that for each te [ —@Q,, @,]
(24) |K,(2)] < eg 6%

and

¢
fo(t) = exp(—}o3t* +im,yt + [ [ Ky(w)duds),
00
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where
. Var(Y;+a¥,)
- a(a—1)

o}

) m2=EYz.

Proof. Let ¢(u,v) = ¢y, »(u, v) and

A, = A,(t) = B[(¥Y,+aY,)%exp{it(¥,+ ¥,)}],

(25) .
A, = A,(1) = E[(Y,+aY,)exp{it(Y,+ Y,)}].

By independence of the random variables Y,, ¥, we have
Ay = —f1 (O)f2(8) —2af ()f2 (1) — &’ f1 (1) f2 (2)-

On the other hand, we have
400 -+o0

4, =B+ [ [ o*e™dp(u,v).

—® —00

Hence we obtain

(26)  —R,(t) =f1()fo(1) + *fi()f; (1) +2f1 ()2 (8) + (VA1 (D) (2),

where
+00 oo

R(t)= [ [ v2e™dp(u, v).

—00 —O0

Similarly, it follows from (25) that

(27) f;(t)f2(t)+afl(t)fé(t) = ":E(V)fl(t)fz(t)‘}‘Rz(t)’
where
400 <o
R,(t) = f five"’“dqo(u,'v).

After the differentiation of (27) we obtain from (26) that for ev:ery
te[—g1) qi]

. —VarV H,(t)
M) ==y T Fora’

Wwhere

R,(0)f,(2)

(28) H,i) = : —~R2(t)].

T2(0) | > . .
OB R —iRw—ia—1) o
Hence, by using the facts that.

Var(V)
a(a—1)

a<0, f;(0)= im,y, =0'§1
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we obtain by integration that

t
falt) = exp(—§a§t2+im2t —Fffz(}i;;—?()u) dudr)
00 2

for every te [ —qi, q.]-
Let
Hy(t)

L®F30)

We shall show that there exists a constant ¢, such that

K,(t) =

|K,(8)| < ¢smax (E|Y,|, B|Y,|, 1)[1+max (M (Y,))]| %"
i=1,2

for every te[—9Q,, @,]
Since
(30) E|VI<E|Y, —aE|Y,] and [f;(t) < E|Y,

we see from (28) that

|H,(t)| < [(E|Y|+(1 20) B|Y,|) R, ()] + [Ry(t)] + Ry (2)]].

1

= ala—

By 13¢-independence of U, V and by virtue of (30), Lemma 3 ((14),
(16)) and Lemma 4 ((17)) we obtain

|H, (1)) < max (B|Y,], B|Y,l,1) {104Ne(1 — a)[2+ 2N [t + 3N+ 2N%¢]] +

+4N-9[max(Mo¥;)][32(1 — )+ 11(L—a)]) — =
i=1,2 a(a—1)

for every te [ —q,, 1]
Substituing N instead of || and then ' instead of N we obtain

|H, (1) < max(E|Y,|, E|Y,|, 1)[936(1 —a)--

+max(MgY,)172(1 — a)*] _ %,
i=1,2 a(a—1)

It follows from (23) that there exists a constant ¢, such that for each

te [—Ql7 Q1]
K, (t)] < egmax(E|Y,|, B|Y,|, 1)[1+max(Mg ¥Y,)] £

1=1,2
hence there exists a constant c¢g such that for te [ —@Q,, @,] formula (24)

holds. This completes the proof of Lemma 6.
We turn now to the proof of Theorem 1. Let us exchange Y, for Y,
and let us put «~! instead of a. Then, by Lemma 6, there exists a function
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K,(t) and a constant ¢, such that for every te [ —@Q,, @,]

(31) K, (8)] < 6,6%%
and
(32) fi(t) = exp(—%aftz—i—imlt—[—fthl(u)dudr),
where o
o = ‘lfa,_rz’ m, =EY,.

It follows from Lemma 6 and from formulas (31) and (32) that the
assumptions of Lemma 2 are satisfied if f(t) = f,({)f.(8), @ = ©/20
and ¢ = @,.Hence, we have

10 A
q,> [W(Gf—i—ag-i—(cé—i—c.,)-ee’m)] -l/ln— .
&

By virtue of (20) and (24) we obtain that for ¢ sufficiently small
condition (21) is satisfied. Thus, Lemmas 5 and 6, and formulas (31) and
(32) imply that there exists a constant ¢; such that in both cases @, = ¢,
and @, = ¢ * the inequality

Py -0 ()

03

Cs
VIn1/e

A

~

holds for each ze¢ R.

This completes the proof of Theorem 1.

Proof of Theorem 2. It follows from Lemma 1 that in order to
prove Theorem 2 it is enough to show that there exists a constant c,
such thatif 7, = 8, T, = S;and Y, (¢ =1, 2, ..., n) are defined by (12),
then Y,,..., Y, are ¢g/VInl/e-normally distributed random variables.

Let us assume g¢(u, v) = @gs, (%, V), f(t) =fp (f) and A; = A,(2)
= E(8; exp (it8)).

The independence of the random variables Y, (+ =1,...,%) and
properties (8) and (9) of 8; imply that

4, = _Zaﬁ(lnf(t))”f"(t) and A, = Var(YI)Zaﬁfn(t)-*-R(t)’
=

i=1

where
400 Ho00

Rty = [ [ ve™dp(u,v).

—00 —00
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Hence if Var(Y,) =o2, E(Y,) =m and ¢, = (¢, ©®/8n,f), then
1 R

n n(t)

o

[(Inf(#)]’ = —o®— for each te[—gq,, q.].

Thus for each te[—gq,, q.]

f@) —exp{ a}tzaﬁ—l—zmt—ff nR(u dudr}.
2 .'I]fn(u

Without loss of generality we may assume that

ma’x{la11|7 veey |Bpnly 1baly - -ty lbnl} <1

Since S(Y,y..., Y,), S3(¥y,..., ¥,) are (6n+1) e-independently
distributed statistics, we see from Lemma 3 (13) and Lemma 4 ((18),
(19)) that for every te [ —gq;, ¢.]

(35) |R(t)| <8N(6n+1)e(1+N|t|)+18n*N-°M4(Y,)+16n*N-°.

Let
R(t
(36) N =¢, @ =min(g, ™), K,()= —; ( Z,__,
2 &I )
j=
16(6n + 1)+ 18n1
9 = oy .
| 2 a5l
i=1
It follows from (33)-(36) that for every te [ —Q,, @.]
(37) K (1)) < 1+ Mo (X))

Moreover, (33), (34), (37) and Lemma 2 imply that

4 A
o[ apearmen] ") /md

Since condition (21) is satisfied for sufficiently small values of &,
we deduce from Lemma 5 that there exists a constant ¢; such that
in both cases, @, = ¢, and @, = ¢4, the inequality

.F _¢ AN
7 2) ( 4 )l s VInl/e

sup,

holds. _
This completes the proof of Theorem 2.
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Proof of Theorem 3. To prove Theorem 3 it is enough to show that

=~

the assumptions of Lemma 5 are satisfied.
Since the statistics S5 has e-polynomial regression of order <2 on 8§,
we have

E 2 0, X, kabe IZX = a) = o+ P17+ B2+ 9(2)
3, k=1
and

sup,|n(z)] < e

If one multiplies the above expression by exp(é¢x) and takes the
expectation, then

5( 3 auxxis 0.5, el 33,
ik=1 j=1 =1

- poB[esp (i 312)] + 5| 3 xesp (i 3]+

) exp (uZX,)]-}-E[n( ZX)exp (thX)].

We put f(t) =fx, y s = q(e,1/2n,f),

e apd )= [n(i’xj)exp (’“j X,.)].
2 i — P i=1 i=1

It follZws from (11) that for every te [ —gs, gs]

7:(?)

( é“ﬁ —nfy)f™(t)

By integration we have for each te[—g¢s, ¢5]

i (P

_D’]:s

(nf()]" = —o*—

f() —exp( %Gzt2+’tMi—ff ﬂ: ;; dudr).

Since for each te [ —g,, ¢5]
a? n.(?) .
73';' frlz(t) ' < 01081/2’

Where ¢,, = |02/B,/, the assumptions of Lemma 5 are satisfied. Thus,
there exists a constant €, such that

xT—m C
sup, | F (w)—d)( )lg L .
Pz| ;1 a Vinl/e
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The proof of Theorem 3 is therefore completed.

6. The case of Lévy’s metric. L(F,, F,) is said to be the distance
of the distribution functions F,, F, in Lévy’s metric, i.e. the metric defined
by the formula

L(Fy, F,) =inf{h: Fi(x—h)—h < Fy(x) < Fy(v+h)+h for all }.

It is well-known that the convergence of distribution functions in
Lévy’s metric is equivalent to the weak convergence.

In [13] Zolotarev proved that for any distribution functions F,, F,
and for every number @ > e

Q
1 |f1 () —f2(2)] log@
Dy By < [ ST a2 =0,

where f;(t) are the characteristic functions of F; (¢ = 1,2).
Using this theorem instead of Esseen’s one we obtain Theorems 1’-3’.
Let K, be the family of distribution functions of the normal non-
-degenerate law and let

ex(X) = inf {L(Fyx, F)}.

FeKpr
THEOREM 1'. Under the assumptions of Theorem 1
1
loglog --
£

1
l/log —
&

THEOREM 2'. If the assumptions of Theorem 2 are satisfied, then

on(X;) <Oy (i = 1,2).

1
loglog —
&€

1
l/log —
&€

COROLLARY. If the assumptions of the Corollary to Theorem 2 are
satisfied, then

on(X;) < Oy

loglog L
E

1
l/log —
15

on(X;) < Oy
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THEOREM 3'. If the assumptions of Theorem 3 are satisfied, then

1
loglog —
8 -
on(X;) < ey —— (t=1,...,m).

1
]/log —
£

As the proofs of the above theorems are very similar to the proofs
given in Section 5, they are omitted.
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0 STABILNOSCI WLASNOSCI CHARAKTERYZUJACYCH ROZKLAD NORMALNY

STRESZCZENIE

Jesli X, ..., X,, 83 niezaleznymi zmiennymi losowymi, to ze stochastycznej
niezaleznosei lub z wielomianowej regresji jednej statystyki wzgledem drugiej w wielu
wypadkach wynika, ze rozklady zmiennych losowych X, ..., X, 83 juz okreflone.

W pracy tej badamy stabilno$é pewnych wlasnosci charakteryzujacych rozklad
normalny. Przez zastgpienie niezaleznofci statystyk slabszym zaloZeniem ich e-nie-
zaleznofci otrzymujemy charakteryzacje rozkladéw wyjsciowych zmiennych loso-
wych, jako ,,bliskich” odpowiednim rozkladom normalnym. Jako miary odlegloéci
miedzy dwoma dystrybuantami F,, F, uzywamy metryki o(F;, F,) = sup.|F, (z)—
— F,(x)| oraz metryki Lévy’ego.



