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ON A MATHEMATICAL MODEL
OF A HEAT EXCHANGE PROCESS IN CONDUCTORS

1. Introduction. In this paper a set of non-linear, first-order, ordinary
differential equations describing a heat exchange process in conductors
is constructed. It is proved that it has solutions with desired properties
(smoothness, asymptotic behaviour, stability). A set of admissible initial
conditions is found. Simple estimations of temperatures are obtained.
Numerical solutions are presented and comparison with experimental
data is performed.

It is well known that if a temperature of a conductor insulation
exceeds some critical value, its ‘“life time” decreases rapidly. In practice,
this unfavourable fact demands to use more of materials and does not
allow to put a curcuit to good account. So, it is an important problem
of the electrical curcuit design in the industry to have a good knowledge
of the dependence on time of the wire and the insulation temperatures.
Up to now, a model based on linear differential equations has been used
but it gives a bad approximation of the real process, as it has been shown
by comparison with experimental data [3]. We propose here a model
based on non-linear differential equations, which describes experimental
data more accurately.

2. Qualitative description of the model and derivation of equations.
"For our model we derive equations from the laws of conservation and
transformation of energy. We are interested in that part of energy which
I8 transmitted in the form of heat. Let us consider a system composed
of a wire and an insulation, both of unit length. The wire plays the role
of the source. It generates the energy @, with the velocity equal to

Qs
dt

(1) — I’R,

Wwhere I is the current, and R is the resistance. The part @, of the energy Q,
is used to heat the wire and the remainder energy @, is transferred to

the insulation. Then the part @, is used to heat the insulation and the
part @, is transferred to the environment. Corresponding velocities are
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given by the equations

de; du;
(2) ) Sioi_di—’ t=1,2, y
dg;
(3) dat = k;Fy(2;0; — ;,%,),
where
1, ¢+ =k, 1, =k,
Oy = . &k = .
0, ¢ #k, -1, ¢ #k,

S; denotes the cross-section, C; the specific heat, ¥, the area of the sample
of the unit length, x; the relative temperature (the temperature of the
environment is assumed to be zero) for the wire if ¢ = 1 and for the in-
sulation if ¢ = 2, and k; denotes the coefficient of heat exchange between
the wire and its insulation if ¢+ = 1 and between the insulation and the
environment if 7 = 2.

We assume that the dependence of the resistance R, the specific
heat C; and the coefficient k, of heat exchange between the insulation
and the environment on the temperatures is expressed by the equations

(4) R(z,) = R°87'(1 + a=y),
(5) Ci(w;) = CY(1+ Biw;),
(6) ko(25) = kg(1+ pay),

where R’ C} and k; denote the corresponding quantities at the tempera-
ture of the environment, and a, g; and u are the thermal coefficients.
Using (1)-(6) we obtain the following energy balance equations:

dx
(7) P87 (1+amy) = ’8'10’?(14‘/31971)d—t1 + &y Fy (0, — ),
dz, o
(8) kyFrz, = 8,C,(1 4 B,x,) i +kzF2(w2+l‘w§)-

Equations (7) and (8) form the set of the first order ordinary differ-
ential equations with the two unknown functions z, and z, of the time
variable t. These equations are non-linear. It is the consequence of the
assumption about the temperature dependence of some material constants.
All parameters appearing in equations (7) and (8) are positive. Finally,
we write them in the normal form with help of the more compact notation

dx,
dt

do,
dt

(9) = (a — bz, + cx,) (1 + exy) 7Y,

(10)

= (b'wy — ¢'my — fu3) (1 + €' @,) 7",
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where

(11) a = I*R'S[201,

(12) b = (k,F,—I*R"aS; ") (8,097},
(13) ¢ =k F (8,0)7",

(14) b =k, F, (8,097,

(15) ¢ = (k,F,+ & F;)(8,03) 7,

(16) [ = uFyk3(8,03)7".

Our model is defined by equations (9) and (10). Hence it is completely
described by the set of the coefficients expressed by the material constants
in formulas (11)-(16). For the experimental values of the material con-
stants, all coefficients are positive. From now on we assume that the
typical values of the material constants are chosen from the set of the
experimental values in an arbitrary way and fixed. The dependence of
the solutions on the parameters will not be marked explicity in future.

3. Requirements for the solutions. Experimental data allow us to
assume that the temperatures of the wire and its insulation are smooth
functions of time and the material parameters if the current is constant

v

Fig. 1. Typical experimental curves

in time. Typical experimental curves for the direct current are drawn
In Fig. 1, the wire temperature x, and the insulation temperature z,
are plotted against time. Under some initial conditions these functions
are non-negative, monotonically increasing and tending, as the time ¢
Increases to infinity, to some constant value. With the given system
(which means that the material constants are fixed) we associate a phase

4 — Zastosow. Matem. 14.3



406 J. Jedrzejewski and J. Skopiec

plane defined as a set of points (z,, z,), which we call a state of the system
under consideration. The last property of the experimental curves can
be expressed as follows: if the time {—>o0, a state of the system tends
to some state with finite, positive coordinates, which we call an equilibrium
state. Further, it follows from the experiment that an equilibrium state
of our system is stable. It means that, after any enough small disturbance
of the system being in an equilibrium state, its state returns, as ¢ — oo,
to an equilibrium state value. So, a set of equations which are to be a good
model must have, for some set of the coefficients which correspond to
the material constants, solutions with the following properties:

1. In the first quadrant of the phase plane there exists an asymptoti-
cally stable (in the Lyapunov sense, as {—oo) equilibrium solution (sta-
tionary solution).

2. There exists a set of initial conditions for which the corresponding
solutions exist for all ¢ > ¢, and which are
unique,
smooth functions of the parameters and time,
monotonically increasing,
non-negative,
tending to the same stationary solution as ¢-—oo.

PR

4. Some definitions. The following definitions will be useful:

Definition 1. A solution (z,, z,) of equations (9) and (10) whose
coordinate functions », and x, have properties 2b, ¢ and e for all
t>t, and all allowed values of the coefficients will be called the
S-solution.

If, however, property 2¢ holds only after a sufficiently long lapse
of time, (z,, ;) will be called W-solution.

Definition 2. A closed subset of the phase plane containing an
equilibrium point (equilibrium state) of equations (9) and (10) is called
the invariant set if it has the following property: once any solution falls
into this set, it cannot leave this set and it tends to the equilibrium point
as t—oo.

5. Proof of the existence of the solutions with the desired properties.

THEOREM. For system (9)-(10) in the first quadrant of the phase plane,
there exists the imvariant set W for which the corresponding solutions have
property 2a. The set W contains a closed subset S for which the corresponding
solutions are the S-solutions.

Solutions corresponding to the set W — 8 are the W-solutions.

The equilibrium point contained in W is asymptotically stable (in the
Lyapunov sense, as t— o).
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Proof. First of all we remark that system (9)-(10) is autonomous.
Therefore, our main tool will be the phase plane analysis of the vector
field associated with system (9)-(10) and some theorems from the theory
of autonomous systems (see [1] and [2]). The proof will be done in several
steps.

1° Let us denote the right-hand sides of equations (9) and (10) by
fa(@; py) and fo(x; p,), respectively, where & = (x,, ;) is a point of the
phase plane, and p, = (a, b, ¢) and p, = (b’, ¢’, f) are sets of the coeffi-
cients. The functions f,(z; p,) and f.(#; p,), obviously, belong to C™-class
in the product of the first quadrant of the coordinate system with the
origin placed at the point (—e™!, —¢'~') and the sets of the allowed
values of the parameters p, and p,, respectively. So, it follows from the
well-known theorems that equations (9) and (10) have locally the unique
solution satisfying the initial condition #(f,) = #, and belonging to
the C>-class with respect to the time variable and the parameters
P, and p,.

2° System (9)-(10) has only two equilibrium points 2° and y° i.e.
the solutions of the equations

film; p)) =0  and  fy(#; ps) = 0.

Their coordinates are given by the following formulas:

! = ab~ ' +cb oy,

x; = {b'e—bc' + [(b'c— be')? + 4abb’ f 12} (2bf) 2,

y1 = ab™' +cb7'yz,

ye = {b'ec—be’ — [(b'c—be’)?+ 4abb’f 12} (2bf) 7.
The point 2° belongs to the first quadrant.
3° Let us show that the set

W ={z: 0<a, <2, 0 <@, < a3} '
is invariant.
Indeed, let us draw the curves given by the equations f,(z; p,) = 0
and f,(z; p,) = 0.
We consider the subset (see Fig. 2)

8 ={z: 2, >0, 2, >0}n{x: fi(x; p,) >0, fo(2; p,) > 0}

and draw the vector field f = (f,,f,) on the boundary of S. The set 8
contains the equilibrium point 2°. The arrows of the drawn vector field
Point into the interior of 8. Now, it is clear that, once any solution falls
into 8, it cannot leave it. In particular, if the initial conditions belong
to 8, then the whole phase plane trajectory belongs to it. Moreover, if
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the initial conditions belong to the set W — 8, then, in view of the sign
of the vector-field coordinates and the geometrical relation between S
and W (see Fig. 2), after a sufficiently large (but finite) lapse of time,
the solutions fall into 8.

X}

) E= f1>0
.
at 20

5Ll
2 tx; P:)=p

Fig. 2. The phase plane picture of system (9)-(10)

4° In view of 3° every solution corresponding to W is bounded,
so it can be continued onto the whole time interval [t,, oo].

Summing up, for every initial condition z(f,) = z,eW, there exists
a unique solution defined for all ¢ > ¢,.

5° It follows from the uniqueness that the equilibrium point 2°
cannot be reached in any finite time.

6° We infer from 3°, 4° and 5° that if the initial condition z(¢,) = zye S,
then the corresponding solution is the S-solution, and if z(¢,) = xye W\S,
then the corresponding solution is the W-solution.

7° Simple calculations show that all eigenvalues of the Jacobi matrix
J'(2°) have the real parts negative, so the equilibrium solution 2° is asym-
ptotically stable (in the Lyapunov sense, as t—oo), q.e.d.

For a fixed z, the following estimation holds:

—ac™ +beT ey <@y < — o' (2f) 7N+ [¢24 40 o, ] (2f)T if we S.

This estimation is useful since x, cannot be measured. So it allows
one to predict quite well the value of @, if «, is known from the measurement.
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6. Numerical results and a comparison with experimental data. We have
used the analog computer Meda which has a unit equal to 10 V.
In order to build the program, equations (9) and (10) have been written
in the following form:

dx dx

dt‘ = A+ Bz, —Cu, dtl + D,
dz , ,  dz
dt2 = A'x,—B'z,—C'22—D'x, dt2 .

The program which we have used is shown in Fig. 3. However, due
to the small unit of our analog computer, the errors were too big and the
results we have obtained have not been satisfactory. A computer with
the unit equal to 100 V is necessary. The program based on the Procedure
Zonnenwald 5 has been built for the digital computer Odra 1304.

qcp x || §<"
’;_@_:[>__

C‘P

Fig. 3. The analog computer program

Fig. 4 shows that we have obtained excellent agreement with the
experimental data.

7. Final remarks. Some explanation connected with Fig. 4 is needed.
Not all values of the material constants contained in equations (11)-(16)
are known. Some of them are difficult to be measured exactly or even
have not been measured, for example the insulation specific heat C, and
the coefficient B, of the temperature dependence on C, (see equation (5)).
By fitting a model curve to the experimental one it is possible to find
these constants.
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It is clear that our result can easily be extended to some more com-
plicated vectors fields f(x), for example one can include in (4)-(6) the
dependence on quadratic terms z; or 3.

12 -t

ty
e

5 0 5 éeo 25 30

Fig. 4. The dependence of time on the wire tempefa.ture under the following conditions:
the wire 1 x DY 6 in the air, I = 32 A

O — points of the experimental curve, x — points of the digital computer curve; the temperature unit
' is 1°C and the time unit is the minute

Further, our interpretation of (9) and (10) as the equations describing
the heat exchange process is of no importance. Equally well, they can
describe charge exchange processes in electrical curcuits or matter ex-
change processes in chemical systems or some phenomena in biological
systems. In practice, alternating currents are of great importance; these
currents, as functions of time, are “step” type functions (Fig. 5). Under
some conditions put on the jumps of the function I(-) at the points i,
one can prove, by similar considerations, the existence of solutions which
are continuous functions of time and parameters, but which are no longer
differentiable functions. The example of such a solution is drawn in Fig. 6.
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Fig. 6. The depeﬂdence of time on the wire terhpera.ture under the following conditions:
the wire 6 x LY 25, the insulation RL47, the current changes in time

— the experimental curve, - - - the digital computer curve; the current unit is the ampére, and the time
unit is the minute

8. Appendix. Here we give the list of the typical values of all para-
-Ineters which have appeared in the considerations.



412 J. Jedrzejewski and J. Skopiec

The values of the coefficients of equations (9)-(10) under the
following conditions: the wire 1 x DY6 in the air, I = 32 A

a b ¢ | e
0.1404 0.1418 0.1423 0.000447
b’ ¢’ I e

0.1492 0.1630 7 0.0000488 0

The values of the material constants for the wire 1 x DY6 in the air

3 7y R a c? B
[em] [em] [Q em] [°ec—1 [Ws °C~1em—3] [°Cc—1]
0.138 0.27 0.00000175 0.003863 3.43 0.000447

A Cg B. kg u
[W°C~lem™1!] [Ws°C—lem—3] [°C—1] [Wem—2°C—1] [°C—13
0.001538 2.3 0 0.00176 0.003538

r, and 7, are the radii of the wire and the insulation, appropriately, and 4 is the
coefficient of thermal conductivity of the insulation. They have been used in the
following formulas to calculate the coefficient F,:

A
rln(r/r) ’

1 =

73 (2lnr,—1) —72(2lnr, —1) ]

r=exp[ 2(’)‘%—"‘%)
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J. JEDRZEJEWSKI i J. SKOPIEC (Wroclaw)

MATEMATYCZNY MODEL PROCESU WYMIANY CIEPLA W PRZEWODNIKACH

STRESZCZENIE

Konstruujemy model ukladu zyla-izolacja, odtwarzajacy zaleznosé¢ temperatury
zyly i izolacji od czasu. Model oparty jest na ukladzie nieliniowych réwnan réznicz-
kowych zwyczajnych pierwszego rzedu. Dowodzimy, Ze uklad ten ma rozwigzania
o zadanych wlasnodciach (gladkoéé, zachowanie asymptotyczne, stabilnosé). Znajdu-
jemy zbiér warunkow poczatkowych, dla ktérych rozwiazania maja te wlasnosei.
Podajemy proste oszacowanie temperatury izolacji w zaleznosci od temperatury
zyly. Poréwnanie rozwigzan numerycznych z krzywymi dos$wiadczalnymi pokazuje
ich bardzo dobra zgodnosé.



