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SOME REMARKS ON DISTANCE IN NATURAL SCIENCES

Marczewski and Steinhaus have introduced in [3] the notion of
systematic distance of biotopes. This distance has been defined in the
following manner.

Let us consider two biotopes A and B. Let us denote the number
of species in biotop 4 by a, the number of species in biotop B by b and
the number of common species for both biotopes by w. Then we put

w _a+b—2w
atb—w a+b—w

(1) o(4,B) =1—

The distance defined in such a manner satisfies the following condi-
tion:

(2) o(4, B)< 1.

A more general notion is the distance of functions (see [3], p. 200).
Let X be a space with measure m. The distance of functions f, ¢ defined
on a set X is given by the following formula:

_ [If—gldm |
= fmax (If1, lgl, If—gl)dm’

We are going to propose some definitions of distance, different than
those presented above. These definitions could be utilized in natural
sciences.

Let us consider a class K of objects and let us assume that we have
distinguished some measurable feature X of those objects. The measure
of this feature of object 4 will be denoted by m(4). As such measure
we may take e. g. the degree of souring of soil, the level of underground
Wwater, the gradient of inclination of a slope, the degree of salinity of
Wwater, the number of species in a biotop, etc. Every such measure deter-
mines some natural metric (distance) defined by the formula

(4) o(4, B) = [m(4A) —m(B)|.

(3) e(f, 9)
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The metric defined in such a manner usually does not satisfy condi-

tion (2). We are going to give some ways of normalization of the metric
defined by formula (4).

1. Let us assume that the expression |m(4)—m(B)| is bounded from
above. Let ¢ denote the l.u.b. (the supremum if it exists) of the expression
|m(A)—m(B)| (for m(A) and m(B) running all values of the feature X).

Let us assume that ¢ is a positive number (the case where ¢ = 0 is
trivial).

We put

jm(A)—m(B)|
- .

(5) e(4, B) =

It is easy to sce that formula (5) defines a metric satisfying con-
dition (2). The distance p(4, B) is equal to 0 iff m(4) is equal to m(B)
and p(4, B)is equal to 1 iff |m(A4)— m(B)| is equal to c.

2. Let us assume that the measure of feature X is bounded from

below. Let d denote the g.l.b. (the infimum if it exists) of this measure.
Then we put

(6) o(4,B) = Im(A4) —m(B)]|
max (m(A)—d, m(B)—d)

in other cases.

We are going to prove that formula (6) defines a metric. To this aim
it is sufficient to verify the triangle inequality (the verification of other

axioms of a metric is trivial). Let us write m(4) =z, m(B) = y and
m(C) = z.

We are going to consider the following cases:
X =Y Or Yy =2 Or & = 2,

x>y > 2,

2> y>x,

Yy > x>z

x>2z>Y,

y>z>w,

A o o

2> 3> y.

The verification of the triangle inequality in case 1 is trivial. In
case 2 we have
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x—y y—z
A, B B, C) =
e(4, B)+e(5,0) max(z —d, y —d) + max(y —d, z—d)
_m—y+y—z\m——y+y—z_m—z o xr—=z
z—d y—d¢ z—d Cr—d max(r—d, z—d)

= ¢(4, 0).
Now we prove the following

LEMMA. If y > 2> 0 and ¢ > 0, then

xr x-+¢
<

y yte

for arbitrary real numbers z, y, c.

Proof. By the assumption we have cx < cy. Then zy + cx < xy 4+ cy,
i. e. (y+¢) < y(x+c). Dividing both sides of this inequality by ¥ (y + ¢),
we obtain

x x+c¢

y y+e

This completes the proof of the lemma.

In order to prove the triangle inequality in case 4, let us observe
that
r—z Yy—z

o(4, C) :w—y’ Q(Byc)zy_d7

<
|
8

o(4, B) =

@
|
Ky

Using the lemma, we obtain

x—2 x—2+Y—2 Y—=
z—d z—dt+y—x y—a’

Thus we have

x—2 Yy—2 Yy—2:+y—=x
A = <- L = o(B, C A, B
o(4, C) o—d Sy—d y—d o(B, 0)+ (4, B),

which verifies the triangle inequality in case 4.

The proof (of the triangle inequality) in cases 3, 5 and 7 is analogous
as in case 2. Proof in case 6 is similar to the proof in case 4.

The distance defined by formula (6) satisfies condition (2). This
distance, contrary to the distance defined by formula (5), has a heteroge-
neous degree of differentiation of objects.

If m(A) and m(B) are near d, then even a little difference m(A4) —m(B)
can imply a large distance of the objects A and B. On the other hand,
if m(A4) and m(B) are large, then even for large differences m(4)—m(B)
the distance (4, B) can be a little one.
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3. Let us assume that the measure of feature X is bounded from
above. Let e denote the l.u.b. (the supremum if it exists) of this measure.
We put
0 if m(4) = m(B) =,
(7) e(4,B) = Im(A)—m(B)|
max (¢ —m(4), e—m(B))

in other cases.

Formula (7) defines a metric. Proof of the triangle inequality is simi-
lar to the proof of the triangle inequality of metric (6). Metric (7) obviously
satisfies condition (2). It has a heterogeneous degree of differentiation.
If m(4) and m(B) are near to e, then even for little differences m(4)—
—m(B) the distance g(A4, B) can be large.

Remark. We may (if it is convenient) replace ¢ in formula (5) by
an arbitrary number ¢’ > ¢, d in formula (6) by an arbitrary number
d’ < d, and e in formula (7) by an arbitrary number ¢’ > ¢. Then formulas
obtained in such a manner define metrics satisfying condition (2).

It seems that the distances defined by formulas (6) and (7) could
be used in the case where the feature X has the following property:

There exists such a number d that if values of the feature X are near
to d, then even their little difference generates considerable differentiation
of the habitat, but the values are far — away from d the difference is
less important.

The features having such property are, for instance, the degree of
salinity of water, the quantity of rainfall, ete.

Now, let us assume that the considered objects are characterized
by n» features, and that the distance satisfying condition (2) has been
defined for every feature. Let p;(4, B) denote the distance of the objects
A and B with respect to the i-th feature.

Let us consider an arbitrary sequence a,, a,, ..., @, of positive real
numbers such that

(8) a+ayt+ ... +a, =1.
We define the distance o(4, B) of the objects A and B by the formula
(9) o(4, B) = a,0:(4, B)+a,0,(4, B) + ... +a,0,(4, B).

It is easy to see that formula (9) defines the metric satisfying con-
dition (2). Besides, this metric satisfies two following conditions:

Q(Aa B) =0 iff 91(A7 B) = 92(A7 B)=..= Qn(A’ B) =0,
e(4,B) =1 iff o,(4, B) = 0,(4,B) = ... = ¢,(4, B) =1.
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This means that the distance of objects is equal to 0 iff those objects
are indentical with respect to every feature, and is equal to 1 iff the object
A differs from the object B to a maximum (in sense of the distance) with
respect to every feature.

Formula (9) defines a synthetic distance of objects. In this formula
the coefficient a; is a measure of an importance of the i-th feature. If we
assume that the considered features are equiponderant onc to other,
i. e. that

1
(10) al=azz...=an=;,

then formula (9) takes the form

(4, B)+ ... +ea(4, B
a1 o(4, By = B BT e bl B),

Example. In the note [2] there was taken, as a feature charac-
terizing ground, 1. an exposition, 2. a decline, 3. a soil reaction (PH),
4. a geological structure, and 5. a kind of the usage. Two little regions A4
and B (in the note [2] they were denoted by 41 and 45, respectively)
were characterized as follows:

(A) 1. 145° 2. 9°, 3. 6, 4. fleksschiefer, 5. plough-land;
(B) 1. 120°, 2. 12°, 3. 5, 4. inoceram beds, 5. plough-land.

In the researched region we have supremum of the difference of the
expositions — 180°, of the declines — 35° and of PH — 4.5.
Using formula (5), we obtain

25° 3°
0:(4, B) = 180° ~ 0.14, 2(4, B) = o 0.09,
A, B ! 0.22
0s(4, B) = — ~ 0.22.

Features 4 and 5 are unmeasurable. Therefore, g,(4, B) and ¢,(A4, B)
we have to give by ourself.

Let us put p,(4, B) = 0.5 and ¢4(4, B) = 0. Using formula (11),
we obtain

0.14+0.0940.22+0.540

~

9]

o(4, B) = =0.19 ~ 0.2.

The calculated distances of objects of a given class may be used for
classifying those objects. It is possible to do it using e. g. the Czekanowski
method (cf., e. g., [1], p. 118-120).
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Je TABOR (Krakéw)

UWAGI O ODLEGLOSCI W NAUKACH PRZYRODNICZYCH
STRESZCZENIE

W pracy podajemy pewne propozycje zdefiniowania odleglosci w naukach
przyrodniczych.

Rozwazmy pewns klase obiektow K i zalézmy, Ze wyrdzniono pewna ceche
mierzalng tych obiektéw. Miara tej cechy dyktuje w klasie K pewna naturalng me-
tryke (odleglosé) zdefiniowana wzorem (4). Metryka taka nie spelnia na ogél warun-
ku (2). Dla odpowiednich zalozen wzory (5), (6) i (7) definiuja (za pomocy metryki
(4)) metryke spelniajaca juz warunek (2). Metryki (6) i (7) wydaja sie odpowiednie
dla cech speliajacych nastepujacy warunek:

Istnieje liczba d taka, Ze jesli wartosci rozwazanej cechy sa bliskic d, to nawet
niewielkie ich réznice powoduja znaczne zroinicowanie $rodowiska, a im wartosei
cechy sa dalsze od d — tym tego samego rzedu réznice ich wartosel graja mniejsza
role.

Za taksa ceche mozna uwazaé np. stopicil zasolenia wody czy wiclkosé opadow.

Jeéli obiekty klasy K sa scharakteryzowane przez n cech i, ze wzgledu na kazda
z tych cech, odleglosé jest zdefiniowana, to syntetyczna odleglo$é obicktow klasy K
mozna zdefiniowaé wzorem (9). Wspolezynnik a; w tym wzorze jest miarg istotnoseci
(waznoSci) i-tej cechy. Jesli rozwazane cechy uznamy za réwnorzedne, to wzoér (9)
mozna zastapié wzorem (11).



