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In a time-optimal control problem we sre given a differential equation
& = f(x, #,u,v), where u and v are control parameters taking their
values from the sets {a, 8> and {(—1, 1), respectively. We shall construct
& synthesis, being optimal in the class of measurable functions, for & certain
case of this system. To determine the optimal synthesis we have to express
the optimal control by the function (u (), v(#)) depending on the state z
of the system and defined on any region G, 0 €@ < R?, such that for
each x, € @ the corresponding response z(t) of the system moves from the
Initial state x, to the origin O in a minimal interval of time.

The problem of construction of an optimal synthesis was solved in
[1], [4] and [11] for the case of linear differential equations and in [3],
[4], [8] and [9] for certain nonlinear equations. In [2] Boltjanskil defined
& regular synthesis and proved its optimality for the class of piecewise
continuous controls. The author’s result is an extension of a result of
Boltjanskii in [4], where the optimal synthesis for a = f was given.

1. Imntroduction. Consider the differential system
(1.1) Tt = %, % = f(at, 2%, u, v),

Where f(x!, 2, u, v) together with of/0x, of [0x?, of |Ou and of [0v are con-
tinuous functions in R*x W, and

(1.2) W = {(u,v):uela,Bd,vel{—1,1>}

18 g compact subset of R?. For any two measurable functions (u(t), 'v(t)),
t € R, taking their values from W (called an admissible conirol) the differen-
tial system (1.1) has a unique absolutely continuous solution x(t) defined
on <t,, t,> which satisfies (1.1) almost everywhere in <t,, ¢,». This is a con-
clusion of Caratheodory’s existence theorem for differential equation
§ystems [6].
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Moreover, the function f satisfies the following assumptions:

Z1. There exist (u,v) e W, —1 < v < 1, such that f(0, 0, u, v) = 0.

Z2(a) z2of (2, 22, u, v)/0u < 0, 2* € R, 2* € R\{0}, (u,v) e W.

Z2(b) of (=1, 22, u, v)/év > 0, (2, 22) € R?, (u,v) e W.

Z3. BEach solution of the system (1.1) corresponding to any admissible
control can be extended over E.

The condition Z3 is satisfied if, for example, f has bounded partial
derivatives df/0x' and &f/ox? on R* x W. It follows from the condition Z1
that the origin O is the stability point of the system (1.1).

Let x(t) be a solution of (1.1) corresponding to an optimal control
(u(t), v(t)) passing from any initial state z, € R’ to the final state O on
{ty, t,>. The Pontryagin maximum principle [5] implies for z(f) and
(»(t), v(t)) that there exists a nontrivial solution y(f) = (y,(?), p,(t)) of
the system

. of . 8
(1.3) Y = "% Y, Yo = —Y1— &;{2 Y2

defined on (t,,t,> such that on (,,t,)

(1.4) (mf‘}’;[%(t)w%t) (0 f (22 (2), 22 (1), w, )]
= v, (1) @2(2) + . (1) (22 (2), 22(1), u(t), v(P)).

A function x(t) such that #(f) = 0 almost everywhere on the interval
{tyy te), t, < By, is called singular. We can exclude from our considerations
every singular solution of (1.1) to be nonoptimal.

The control (u(t), v(t)) is called extremal on i,,t) if the response
x(t) of (1.1) corresponding to it is not singular and there exists a non-
trivial solution of (1.3) such that (1.4) holds for ¢ e {t,, t,).

Then the search for any optimal control can be restricted to the
examination of the set of extremal controls. From (1.4) and Z2 we obtain
the necessary condition for the extremality of control.

If y, # 0, then

(1.5) v = sgny,.
Moreover, if 2% 5= 0, then
a if vsgna?>0,
(1.6) w=1
B if vsgna® < 0.

Now we prove a few auxiliary lemmas.

LeMMA 1.1, If p(t) = (v1(2), po(2)) is a nontrivial solution of (1.3)
then zero points of the function y,(t) are isolated.
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Proof. Notice at first that y,(f) = 0 fails on an interval (¢, ¢,>,
i, <t,, because otherwise y,(f) = 0 on this interval; this contradicts
the nontriviality of v (f). Also the set of zeros of v,(t) cannot be dense on
any interval {t,, %>, t; <t,.

Now we show that between two zeros of y,(t) a zero of y,(t) lies.
Let t,, t, (t, < t,) be two zeros of y,. Then there exists an interval {t,, ;>
< <{t,, t,> such that v,(t;) = y.(f;) = 0 and, for instance, w,(t) > 0 for
te(t,, t,). By the nontriviality of v(f) we have w,(f,) % 0. Notice that
¥1(1)) < 0. Indeed, if y, (t;) > 0, then, by (1.3), ¥,(¢) < 0 almost everywhere
in the neighbourhood of the point ¢, and since y,(f;) = 0, we obtain
¥s(t) < 0 on the right-hand neighbourhood of ¢,. This contradicts the
assumption y,(t) > 0 for t e (I, t,). Similarly we obtain v, (f;) > 0, and
thus the function v, (t) takes the value 0 on the interval (¢,, #;).

Let us assume now that the set of zeros of y,(f) has a condensation
point p and let {¢,} be a sequence of zeros of y,(¢) which converges to p.
Without loss of generality we may assume that {t,} is a monotonic sequence.
Then there exists a sequence {f,} tending to p such that y,(f,) = 0. There-
fore y,(p) = w,(p) = 0, which contradicts the nontriviality of the func-
tion y(¢).

LEMMA 1.2. The coordinate xz2(t) of the solution x(t) = (wl(t),mz(t))
of the system (1.1) corresponding to any extremal control takes the value 0
at isolated points.

Proof. Notice at first that the function 2#2(¢) cannot be equal to 0 on
an interval <t,,t,> of positive length because otherwise (d*(t), #2(t)) = 0
on this interval, which contradicts the nonsingularity of z(¢). Therefore,
the set of zeros of #2(f) is not dense in any interval <{t,, t,>, ¢, < i,.

Let {s;, 8,> be an interval on which the function y,(?) does not change
its sign. Then, because of (1.5), v(t) = const = v, for ¢ € (s, s,>. We prove
that the set of zeros of x2(f) in the interval (s, s,> is finite.

We show at first that if {i,,1,) < (s;,8,) and 2%(¢;) = «%(f,) = O,
and, for instance, 22(t) > 0 for ¢ € (¢, t,), then there exists a point = € (¢, %)
Such that #2(r) = 0. Indeed, by (1.6) we have u(¢) = const = u, in the
interval (t,, t,>, and so x(t) is a function of class " on this interval. By the
assumption about the function x2(t) there exists = e (t,,?,) such that
22 (1) = 0.

Let P = {t €<s;, 8,y :22(t) = 0}. The equation &' = #* implies
#1(t) = 0fort e P. Assume now that P is an infinite set and let = be a con-
densation point of P. It is clear that = € P because P is a closed set. Futher-
Iore, P is a boundary set, thus there exists a sequence of intervals I,
= (1, t3) = {84, 8,>, separate in pairs, such that x2({f) = 2%(&3) = O,
#2(t) % 0forte I, and t} — 7,1ty — 7. As was shown before, in each interval
I, there exists a point 7, such that 43(z,) = 0.
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Since on the intervals I, we have u(t) = const = a or g, it is possible
to select a subsequence (for simplicity still denoted by {I,}) such that
either u(t) = a on | JI, or u(t) = g on | JI,. Let, for example, u(t) = a
for ¢ € | JI,. Then, by f(#'(z,), #%(7,), @, 9,) = @*(z,) = 0, by the conti-
nuity of the functions a!(t), #2(t) and by the condition z,, — 7, we obtain
f(#*(z), 0, a, v,) = 0. Since, by Z2(a), f(2*(z),0,u,v) =0 for each
% € {a, >, we infer that (ml(r), 0) is a stationary point and for every
control strategy u(f) we have x!(f) = const and 2%(f) = 0 on the interval
{81, 83), which contradicts the nonsingularity of z(f).

Denote by E the set of vertices of the rectangle W. The following
conclusion follows from (1.5), (1.6) and from Lemmas 1.1 and 1.2.

LeMMA 1.3. Each extremal control is a piecewise constant function.
It has a finite number of switches on every imterval of finite length and takes
its values from E.

Let x(t, z,, uy, v5) = x(t) and p(t, v°, uy, v,) = p(t) be solutions of
the systems (1.1) and (1.3), respectively, with a constant control (u(t), v(t))
= (%o, vy) € E and with the initial conditions (0, z,, %, v,) = z, and
(0, v°, uy, v,) = ° respectively. Moreover, let L'y 0, (toy Do) be a tra-
jectory defined by

Puo,vo(toypo) ={zeR:x = x(t—1, Do, Uoy Vo), t < to}.

Notice that if #(t,, p,, %e, v4) 7= 0 for any ¢, € B, then &(t, po, %o, Vo)
# 0 for each t € R and x(t) is a nonsingular function. A trajectory cor-
responding to an extremal control is said to be extremal.

LEMMA 1.4. Any segment of the trajectory I's,(0, 0) and any segment
of the trajectory I'; _,(0,0) are the only extremal trajectories which reach
O at the moment t = 0 without variation of the control strategy. These segments
are included in {x: 2' > 0, 2* < 0} and {x: ' < 0, 2% > 0}, respectively.

Proof. Lemma 1.3 and (1.6) imply that the only segments of the
trajectory corresponding to the constant controls (a, —1) or (8,1) on
the half-space {x: 22 < 0} and (a,1) or (8, —1), respectively, on the
half-space {#: #* > 0} are extremal. From Z1 and Z2 we obtain

f(0,0,8,1)>0, f(0,0,a,-1)<0
and
f(0,0,8, -1)<0, f(0,0,a,1)>0,

thus an extremal trajectory lying in the half-space {#: #? < 0} and reach-
ing 0 at t = 0 must take the shape of I';,(0, 0); similarly, an extremal
trajectory reaching O from the half-space {x: x2 > 0} must take the shape
of Pﬂ,—l (0, 0).

The segments I,(0,0)N{z: *< 0} and I, _,(0,0)Nn{z: a*> 0}
of the trajectories I;,(0,0) and I, _,(0,0), respectively, are nonsin-
gular. Thus, if 22(¢,0,8,1) <0 for te(t,0) and x2(t,0,8, —1) >0
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for ¢ e (t,, 0), then #'(¢, 0, 8,1) < O for ¢ e (t,, 0) and 4(¢, 0,8, —1) >0
for ¢ e (¢,, 0), and so (¢, 0,8,1) >0 on <¢,0) and 2'(¢,0,8, —1) < 0
on t,, 0). Moreover, the trajectories I';,(0, 0) and I'; _,(0, 0) are extremal
on any left-hand neighbourhood at ¢ = 0 with respect to the functions
»(t, (1, 0), #,1) and y(t, (—1,0), B, —1), respectively, because by (1.3)
we have
¥2(0,(1,0),8,1) = —1<0 and ,(0,(—1,0),8, —1) =1>0.
They are extremal on the intervals

(t1, 0) = {t € (t1, 0) : 9, ¢, (1, 0), B, 1) > 0}

and
(t2y 0) = {t € (2, 0) : pa(t, (—1,0), B, —1) < 0},
respectively.
Consider the time-control system
(1'7) z =f(x7u)7

where x € R", u € U, f(x, ) and the derivatives df/dx and df/du are con-
tinuous functions on R" x U, and U is a compact convex set.

THEOREM 1.1. If there exists an optimal synthesis v(x) of the system
(1.7) on a region G in the class of piecewise continuous controls and the optimal
time T (x) is a continuous function on G, then this synthesis is also optimal
in the class of measurable controls.

The proof of this theorem will be preceded by a lemma.

Suppose that equation (1.7) has a solution 2z(f, ) which can be ex-
tended on the interval (i,, t,> for each measurable control strategy taking
its values from U.

LemMMA 1.5. For each number € > 0 there exists such a number § > 0
that the inequality

J () —ua(m)lde < 6

implies
|2(8, uy) —2(t, ug)| <& for t ety t,)>.

The proof of this lemma is based on the idea of the proof of the theorem
on the continuous dependence of solutions of differential equations on
the parameter variable [11].

Proof of Theorem 1.1. Let w(x) = —T (), € G. Of course, the
function (x) is continuous on @ and, for each piecewise continuous
control u(t) moving the response z(¢) of (1.7) from the state £ € G to the
Origin O on the time interval <¢,,t,>, the inequality

(1.8) w(0)—w(2) <t —1
holds,
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Now let u,(f) be a measurable control taking its values from U,
moving the point £ to O on the time interval {¢,, ¢,> and let x,(t) be a solu-
tion of (1.7) corresponding to this control. For each » > 0 Luzin’s theorem
implies the existence of a piecewise continuous control u,(f) with values
from U such that

t
(1.9) J () — () dz < n.
to
By Lemma 1.5 for each 6 > 0 there exists 5 > 0 such that the response
@,(t) of (1.7) with the initial condition z,(f,) = 0 corresponding to the
control u,(t) satisfies the inequality |z,(f) —z,(t)| < é for ¢t € {t,, t,>. Then
also

(1.10) [y (tg) — o] < 6.
By the continuity of w(z), for any & > 0 there exists 6 > 0 such that
| (@ (t0)) — o (@) | < ¢,
since, by (1.8)-(1.10), for each ¢ > 0 we obtain the inequality
(0)—w(2) <t —t+s,

which implies T (z) < t, —t,. Since the class of measurable functions con-
tains the class of piecewise continuous functions, 7'(z) is the optimal
time also in the class of measurable controls. This completes the proof
of Theorem 1.1.

2. The optimal synthesis for a certain nonoscillatory system.

2.1. In this section we consider the differential system (1.1) with
the restriction (1.2) for values of admissible controls and with the function
f(@*, #®, u, v) satisfying the assumptions Z1-Z3 and the following addi-
tional condition:

Z4. There exists a function ¢(z',a*, ,v) € C'(R* X W) such that

(a) for each 2 e R and (u,v)e W

44
u (', 0, u,v) >0,

(b) for each constant control (u(t), v(f)) = (o, ¥y), (%o, v,) € B, and
for each (z!, 2?) € R? the inequality

9 9 8
f f¢+¢w2+

T owt Ox? oxt ox? J+e*<0

holds.
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The class of systems satisfying the conditions Z1-Z4 is nonempty
because it contains the linear systems

(2.1) =22, &= —gl—uxrt+o,

Where in the definition (1.2) of W we take a > 2. Then the condition Z4
Is satisfied for the function ¢ = —1.

The forthcoming three lemmas describe properties of solutions of
the systems (1.1) and (1.3).

Let z(t) = (#'(t), #2(¢)) be a nonsingular solution of (1.1) with a con-
Stant control (u(t), 'D(t)) = (Ug, V), (%o, Vo) € B, and let y(t) = ('l’l(t)} "Pz(t))
be a nontrivial solution of the system (1.3) corresponding to this control.

LeEMMA 2.1. The function w,(t) takes the value zero mot more than
once.

LEMMA 2.2. The coordinate x2(t) takes the value zero not more than
once.

LEMMA 2.3. Let y(t) be a nonirivial solution of (1.3) corresponding
to the control (which is discontinuous at time )

(Byvo) for t <7,
(a;v) for 1>,

(u(t), v(t) =

Where v, € {—1,1}, and corresponding to a solution of (1.1), suitable for
this control, with the condition x*(zr) = 0. Then the fumction v,(1) takes
the value zero mot more than once.

The proofs of two first lemmas are almost identical with the proofs
of similar lemmas in [4]. The proof of the last lemma is similar to the
Proofs of Lemmas 2.1 and 2.2. From Z4(a) it is easy to see that the auxiliary
function

n(t) = pi(t) + (2 (1), 2(2), u(t), v(f) pa(t) for p,(r) <0

and the funection

1(t) = —pa(t) —@(2*(t), 22(t), u(t), 0(t))-ya(t)  for py(z) >0,
Which are discontinuous at v, are nonincreasing at z.

2.2. Consider now the trajectories I';,(0,0) and I, _,(0, 0).

LemmA 2.4. The curves I';,(0,0) and I'y _,(0,0) are exiremal, their
Projection on the axis Ox' is a one-to-one mapping and

(2.2)  1,,(0,0)  {&: 3> 0,22 < 0}, I';_,(0,0) c {&: a* <0, 2% > 0}.

Proof. By the conditions Z1 and Z2 we have f(0,0,8,1) >0 and
Ko, 0,8, —1) < 0, thus (2.2) and the existence of a projection of these



4388 M. Korczak

trajectories on the axis Ox' follow from Lemma 2.2 and from the equa-
tion &' = 2.

The curves I%,(0,0) and I, _,(0,0) are extremal according to
»(t, (1, 0), 8,1) and w(¢, (—1,0), 8, —1), respectively (¢ < 0), because
by Lemma 2.1 the functions y,(t, (1, 0), 8,1) and w,(t, (-1, 0), 8, —1)

A_2

x
. _,(00)
B-1Y7
-1 (2,p,)
Ka,1 Kﬁ,—1
x
(o) 0, P,
G (¢ \
0(,—1( o;/oo) %’-—1(1‘];/07)
/%)1 Ka}—]
o —1(2,,0:
Fig. 1

take the value zero not more than once. Thus from the shape of the sys-
tem (1.3) and from the initial conditions we obtain

va(t, (1,0),8,1) >0 and (¢, (—1,0),8, —1) <0 for t<0.

Then the control (u(t), v(t)) = (8, 1), the funetions y(t, (1, 0), 8, 1)
and z(t, 0, 8,1) satisfy condition (1.4) of the maximum principle for
t < 0. Condition (1.4) is also satisfied for ¢ < 0 if

(u(®), v@) = (B, —1),
p() = 'tp(t, (-1, 0), 8, —1) and (¢, 0,8, —1).
Write now
Ly 0y (tos Do) = {(t, @): & = @(E—To, Do, %o, Vo), T < To}

Let (fy, Po) € ['51(0, 0). Then pi < 0 and the trajectory I, _,(t,, Po)
is nonsingular for ¢ <{?,. Since, by Z2,

f(p7ﬂ11)>f(pyﬂy -1) > f(p, @, —1) for p2 <0,

every trajectory I, _,(¢, p) for (¢, p) € fﬁ,l (0, 0) reaches the curve Iz, (0, 0)
on its right side at a nonzero angle. Since, by Lemma 2.2, I', _, (%, Po)
intersects the axis Ox' not more than once, p, is the unique common
point of the trajectory I';,(0, 0) and the arc Iy, _,(to, Po)-
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According to Lemma 2.2 two cases can occur:

(1) I'a,—1(ey o) = {2: 2% < 0},

(ii) there exists a unique point ¢ € {x: x* = 0} such that
Fa,—l(t07p0)n{w: x? = 0} = {q}.

The inequality #! = 22 implies ¢* > 0.
In case (i) the trajectory

(2.3) (Tﬂ,1(0’ 0)N\ 1%, (%o, pO))UFa,-—l(t07 Do)
is described by the function
Z(t—1ty, Doy B, 1) for 1 € <1,, 0),

(2.4) x(t) =
Z(t—19, Poy @y —1) for t € (— o0, y),

which is a solution of the system (1.1) with the control
, 1) for t € {t,, 0),
, —1) for te(—o0,1,).

(u(t), v(t)) — [‘
(a

The trajectory (2.3) lies completely in the fourth quadrant of the
Phase plane.

We show that this trajectory is an extremal one in the interval ( — oo, 0)
according to the nontrivial solution of (1.3):

y)(t—to,(—l,O),ﬂ,l) for ¢ e <1y, 0),
w(t—to, (-1,0), a, —1) for te(—o0,1,).

This follows from the fact that ,(f,) = —vi(t) = 1, v.(t) = 0,
and thus, by Lemma 2.1,

vo(t, (—1,0),8,1) >0 for te (i, 0)

p(t) =

and
p,(ty (—1,0),a, —1) <0 for ¢ < t,.

In case (ii) there exists a unique moment ¥, < {, at which the re-
Sponse (2.4) intersects the axis Oz'. Let

q = x(ty—1y, Poy @, —1) and s = ‘/’(tl_tm(_l’ 0), a, _1)'
Consider the trajectory
(Fﬁ,l(()’ 0)N\ 1, (%, Po))u(ra,—l(toy PNy _1 (24, Q))Urﬁ,—l (t15 q)
described by the equation

z(t, 0, p,1) for 1t e <ty, 0),
z(t) = @ (t—1y, Po, @y, —1) for t e (i, ),
x(t—1ty,q, 8, —1) for te (—o0,1,).

3 — Zastos. Mat. 17.3
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The function x(t) satisfies the differential system (1.1) with the
control

(8,1) for t € {3y, 0),
{u(t)y 'v(t)) = [(a7 —1) for t € <1y, t,),
(B, —1) for te(—o0,t,)

and it is an extremal one according to the nontrivial solution of (1.3):

'l’(t'—tm("lyo)yﬁyl) for t € <t,, 0),
'P(t—tm (—1,0), a, _1) for t e (t,, 1),
p(t—1t,8,8, —1) for te(—o0,1,).

p(t) =

This follows from the considerations for case (i) and from Lemma 2.3.

Moreover, the trajectory I', _, (¢, p,) reaches the axis Ox* with a non-
zero velocity and f(q*, 0, #, —1) < 0. Thus, by condition Z2(a), we have
f(¢*, 0,a, —1) < 0. Consequently, it follows from Lemma 2.2 that the
trajectory I'; _,(t;, q) lies in the upper half-space.

Notice that the trajectory I, _,(0,0) reaches the axis Ox' from
the upper half-space with a nonzero velocity at a right angle, because
71 and Z3(b) imply f(0, 0, a, —1) < 0. By the theorem on the continuous
dependence of solutions of differential equations on the initial conditions,
the trajectory I, _,(%,, p,) intersects the axis Ox* when p, e I;,(0, 0)
is sufficiently near to O. Thus case (ii) holds for any part of the curve
I'y,(0,0).

In case (ii) one only needs to consider the linear case (2.1). Then
the rays

l, = {(wl,xz): ot >1,2% = _ﬂ—;/ﬂz_4 (wl—l)}
and
l, = {(wl,wz): > -1, = _a_;/az_4 (wl—i-l)}

intersect each other and are trajectories of the system (2.1) with the
constant control corresponding to (8, 1) or (a, —1). The points of I';,(0, 0)
sufficiently near to O lie between the rays I, and l,, thus according to the
theorem on the existence of unique solutions of differential equations
the curve I';1(0, 0) is on the left side of the ray I,. Then the ray I, crosses
this curve at some point p,. By the theorem on the existence of a unique
trajectory, I', _;(y, Po) lies on the ray I, and it does not intersect the
axis Oz'.

If case (i) holds, then there exists a point p, € I;,(0, 0) such that
for each point p, € I;,(0, 0) lying above p, the trajectory I, _(t,, Po)s
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(toy o) € 1",3'1(0, 0), crosses the axis Oz!. If the point p, equals p, or lies
below p,, the trajectory Iy, _1(ty, Po) is completely included in the fourth
quadrant of the phase plane.

The extremal trajectories for the points (f,, p,) efﬁ,_l(0,0) are
constructed similarly.

Notice that the above-described trajectories have not any other
common point with the exception of the possible common segment with
the curve I},(0,0) or I, _,(0, 0), because their extensions for p, # p,
are solutions of the same differential autonomous equation with different
initial conditions.

Notice also that every extremal trajectory reaching O must be one
of the above trajectories. Indeed, by Lemma 1.4, an extremal trajectory
Teaching O must finish in a segment of the trajectory I, ,(0, 0) or I'; _,(0, 0)
and, by (1.6), an extremal control in the lower half-space can be only
of shape (8, 1) or (a, —1) and in the upper half-space must take the form
(B, —1) or (a, 1). Moreover, according to Lemmas 2.1, 2.2 and 2.3, the
extremal control has not more than two switches. Hence the above-
described curves are the unique extremal trajectories which reach O.

2.3. Denote by G the set which consists of 0 and of all points of
trajectories described in 2.2.

If
(2.5) lim #i(, 0, 8,1) = oo,

t>—o0

then, by the theorem on the continuous dependence of solutions of differ-
ential equations on the initial conditions and by @' = 22, the whole posi-
tive semi-axis #' is included in G. Notice that if there exists a point
(to, p) € ['5,(0, 0) such that I, _;(t,, p,) does not cross the axis Oz,
then (2.5) holds. If, however,

lim 2'(t,0,8,1) = a < o,

t—>—o0
then by 4! = 42 we have
lim «2(¢,0,8,1) = 0.
t—>—o0
Thus, by Z2 each trajectory I', _;(to, Do)y {tos Do) € I'51(0, 0), inter-
Sects the axis Ox! and the interval <O a) of the positive semi-axis Ox*
I8 contained in @. Since by Z2 we have also f(0,0, 8, —1) < f(a, 0, $,1)
= 0, the trajectory I'; _,(t,, (a,0)), t, € R, is nonsmgula,r and 1t bounds
the set @ on the right side, where Gm({ (@, 0)}U T, _i(to, (a, 0))) 9.
The curve I'p:(0,0)U{0}U I (0, 0) divides G into two separate parts.
By the theorem on the continuous dependence of solutions of differ-
€ntial equations on the initial conditions one can easily prove, similarly
48 in [4], that G is an open set.
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Write the following notation:

- Koy = U Lo, i (t, p) n{w: 2* < 0},
(t:p)epﬁ,l(o’o)
Ka,l = U Pa,l(trp)n{w: w2>0}7
(t.p)el’g, _1(0,0)
KB,—I = U Fﬂ,—l(s(typ)yq(t’p))7
(t,p)efp’l(0,0)
Kﬂ.l = U Fﬂ,l(s(t’p)a q(t, p))’

(t.p)el'g _1(0,0)

where s(t, p) is the moment at which the trajectory I, _,(t,p)orT,,(t,p)
respectively, comes out of the point ¢(¢, p) on the axis Ox'. The sets K, _,,
K., K;_; and K, , are open.

We can now define in the region G the control as a function depend-
ing upon the state x# of the control system in the following way:

(2.6)
(a, 1) for re K,,V(@n{w: 21 <0, = 0}),
(8, 1) for w e K;,UT%,(0,0),
(u(@),v(2)) = {(a, —=1) for zeK, ,u(@n{z: 22 > 0,2 = 0}),
By —1) forxeKy; I, _,(0,0),
(w, v) for z = 0.

Then each solution of the system (1.1) with the initial condition
xy € G\ {0} reaches O and is equal to the respective part of the trajectory
described in 2.2.

The set I,(0,0)U I, _,(0,0)VU(GN{x: x* = 0}) consisting of 0 and
of the line of switches of the control (u(x), »(x)) is a piecewise smootb
manifold of dimension less than 2.

We consider the origin O as a 0-dimensional cage (a curvilinear quad-
rangle) of the second type. A 1-dimensional cage of the first type consists
of the curves I';;(0, 0) and I'; _,(0, 0). The axis {x: #* = 0,2 # 0} NG
is a 1-dimensional cage of the second type. The sets K, ,, K, _,, Kz, Kp 1
are 2-dimensional cages of the second type. Let

P = {0}, P'=T5,(0,0)Ul;_,(0,0)U({z: a* = 0}nG@), P =G@G.

For each point z, € G\{0} a univocal function w(z) is defined so that
the solution of (1.1) with the condition x(w(%,)) = @, reaches O exactly
at ¢t = 0 and the function T'(z,) = — w(z,) is the time of control. Assum-
ing w(0) = 0, we obtain a function defined and continuous on the whole
set G. The continuity of w(z) follows from the theorem on the continuou$
dependence of solutions of differential equations on the initial conditions
and from the construction of trajectories in 2.2. Moreover, w(z) is con-
tinuously differentiable on the set K, ,VK, UKz, UK, ;.
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Similarly as in [4], one can show that @ is the set of all points from
which the response z(t) of (1.1) corresponding to an admissible control
moves to O.

Thus all conditions of regularity of the synthesis are satisfied. From
the Boltjanskii theorem [4] we get

CoNCLUSION 2.1. The synthesis (2.6) of conirol is optimal in R® in the
class of piecewise continuous functions.

Theorem 1.1 implies

CONCLUSION 2.2. The synthesis (2.6) of control is optimal in R* in the
class of measurable functions.

Remark. Inthe case of the linear equation # + u2 4+« = v, considered
in [7], the parameter v has the character of an outer force while « is taken
to mean the coefficient of environmental resistance. The same physical
interpretation holds for the nonlinear case considered in this paper.
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MARIA KORCZAK (Wroclaw)

CZASOWO-OPTYMALNE STEROWANIE
PEWNYM NIEOSCYLACYJNYM UKLADEM DYNAMICZNYM DRUGIEGO RZEDU

STRESZCZENIE

W pracy rozwaza si¢ zagadnienie syntezy sterowan optymalnych dla nieliniowego
ukladu drugiego rzedu # = f(x, &, uw,v) z dwoma parametrami sterujagcymi u i v.
Czesé pierwsza zawiera sformulowanie zagadnienia oraz wlasnodei sterowan i trajektorii
ekstremalnych, niezbedne dla dalszych rozwazani. W czedei drugiej znajduje si¢ kon-
strukcja syntezy optymalnej dla obiektu spelniajacego pewne warunki wykluczajace
oscylacje. W przypadku takiego ukladu, sterowania optymalne u(¢) i v(f) maja odpo-
wiednio co najwyzej dwa lub jedno przelaczenie.



