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POINT PROCESSES OF MINIMAL ORDER STATISTICS

1. Introduction. Let
(1) X =1{X,: neZ}

be a stationary sequence of random variables with distributions F(z)
= P(X, < x), where Z is the set of integer numbers. We denote by
F*¥ . (Z) the o-field generated by the sequence {X,: n < k}, where % € Z.

Suppose that {u, = u,(7)} is a sequence of real numbers satisfying
the following condition:

(2) F(u,) =t/m+o(1/n) for every > 0.

The main assumption in this paper is that the sequence (1) satisfies
Berman’s condition of order 1.

Definition 1. The stationary sequence ¥ = {X,: n € Z} satisfies
Berman’s condition of order 1 if for

(3) p(#) = B|P(X, < 2 | FLo(%)) —F ()|
we have

Wwhere u, is defined to satisfy (2).

Definition 1 is a special case of the definition of [1], p. 503 (see also
[2], p. 62).

Remark that every independent scquence {X,: n e Z} of random
variables with identical distributions trivially satisfies Berman’s con-
dition.

The next useful tool in' our consideration is the following

LemMMA 1. Suppose that & = {X,: n € Z} is a stationary sequence of
random variables with distributions F(x). Then

[P(N) Xy > ) = (L —F @)| < np(@),
j=
Where @ is a function defined to satisfy (3) and r;< Tip1e
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Proof. Let {X,: » € Z} be a stationary sequence associated with
{X,: neZ}, eg. a sequence of independent random variables with
identical distributions F(») = P(X, < #) = P(X, < »). For fixed » and
x, define the events A,J, and B,]_, where j € Z, as follows:

A, ={X,>a} and B, ={X, >ad}.

The difference P(() 4,)—P(() B,,) can be expressed as the sum
i=1 i=1

of differences of probabilities:

P(() 4,)-P(() B,) = [P(() 4,)~P () 4,0 B, )]+

7

n—1 n—2 n
+ [P(JD1 4,.0B,) —P(]O1 4,.0 =ﬂ_ B )]+...+

1

+ [P(j{i\1 A,jnjjll B,) —P(E\: 4,0 ék B +...+
+P(4,, njéz B,)—P(() B,)].

k—1
Remark that (M) A,], is in F51(X) « FEJHX). Hence
j=1

n

(Y450 () B)-P(0) 40 () B,)

j=k+1

I

Playn ) B, 1575 0) -2 5, 17 @l
k—1 j=k+1 7 i=k

N 4,

P 3

= |k_ J P@THP (A, 177 E) P (B, aP|

N A4
j=1 "

<E[P(4,, |F51(%)) —P(B,,)].

Since {X,: n € Z} is stationary, so is the sequence of random vari-
ables {|P(4, |#%;' (%)) —P(B,,)|, k € Z}; hence

E|P(4,, |#351(%)) —P(B,,)| = B|P(4, | #2,(%) —P(B))|.
Thus
lP(é Ar_,-) _P(é Brj)l < '""P(m) .

The proof of Lemma 1 is an obvious modification of the proof of
Theorem 2.1 from [1].
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2. The main theorem. Let N Dbe the set of natural numbers. For
each n e N we define the discrete parameter process 7,(f) for t = j/n
and j e Z as 7,(j/n) = X;. Thus for a given » the process 7, is obtained
from {X,: n € Z} by time scale changes. ‘

Definition 2. The point process N,, n € N, defined as

(5) N, (B) = Z Lo Giimy<up)

jlneB

for every Borel subset B of the real line, where I ,(-) is the indicator
function of the set A, will be called a point process of minimal order
statistics.

The point processes M, may be properly regarded as random ele-
ments either in the space of integer-valued increasing step functions on
the real line or in the space A4 of integer-valued Borel measures on the
real line. In either case the space is metric under the “vague topology”
(e.g., generated in 4 by the functions u—[fdu for continuous f with
bounded support, cf. [3]) and we may consider convergence in distribu-
tion of such random elements (Mn—d>M will be used to indicate this
convergence).

The following result is a special case of a theorem of Kallenberg [3].

THEOREM 1. Let M,, » € N, be point processes on the real line and
let M be a point process without multiple events and such that M ({a}) = 0
(a.s.) for every fized real a. Assume that

(i) P(M,(B) = 0)>P(M(B) = 0) for all sets B of the form ) (as, b;],
an<bh<..<a<b,; i=1

(ii) imsup EM,(a, bl < EM(a,b] for all finite a<<b.

n—>o
Then Mn—d»M .
Now we use this theorem to obtain the main result of this paper.
The idea of proof of the following theorem is taken from [4].

THEOREM 2. Let {X,: n € Z} be a stationary sequence of random vari-
ables which satisfies Berman’s conditions (3) and (4). Suppose that {u,: n € N}
satisfies condition (2). If N, is the point process defined in (5), then

N,%N,

where N is a Poisson process with parameter T.

LEMMA 2. Let {X,: n e Z} satisfy the assumption of Theorem 2 and
let {u,: ne N} satisfy condition (2). Then for every a> 0 we have

ImP( min X;<wu,) =1—e .

n—+00 1<<ji<lan]
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Proof. Let
Z,=min X; and A4, ={X;>u,}.

1<i<n
Remark that if « =1, then
(6) imP(Z,<u,) =1—e7,

n—>00

which follows easily from the equalities

P(Z, < ) —(1 =) <| [ [ P(4y) =€

+[P(0) 4a) - [ [ P43

= =) =+ |P(() 4i) (L —F )"

=|1—zm+o@/m)*—e*

+ng(u,).
Now assume that a > 0. From (6) we obtain

lim .P (Z[an] < u[an] (aT)) == 1 -— 8-01-
n—>0o

Hence it is necessary only to show that
(M lim [P (Z[,m] < u[,m](ar)) —P (Z[an] < un(-c))] =0.
n—>o0
But the proof of (7) is an obvious modification of the proof of Theo-

rem 2.1 from [4]. Clearly, (7) proves Lemma 2.

Proof of Theorem 2. To prove the theorem it is enough to show
that the sequence {N,: » € N} satisfies the assumptions of Theorem 1.
The assumption (ii) of this theorem holds trivially:

EN,(a, b] = ([bn]—[an]) F(u,) < n(b—a)(v/n+0(1/n)) = EN(a, b].
To check (i) suppose that B = (a, b] for some a < b. Then
P(Nn(aa b] = 0) = -P(Z[bn]-[an] = Uy).
Let >0 and let n be sufficiently large. Then
[(b—a)n]< [bn]—[an] < [(b—a)n]+1 < [(b—a+h)n]
and, consequently,
P(Zyp—armym = %) < P(Zipny_(am = Un) < P(Zyp_gyn) = Uy) -

By Lemma 2, the outside terms have the limits ¢~"®~9+% and ¢=*¢-9),
respectively, and since h is arbitrary, we have

lim P(N,(a, b] = 0) = ¢7"¢-9),

~>»00



Point processes 607

Now let B = | J (a;, 8,1, o, < b, < ...< @, < b,, and put
i=1
E; = ([e;n]+1, [a;n]+2, ..., [b;n]),
Z(E;) = min{X;: i € E;},
Cjn = {Z(E’) = un}? -Ain = {Xz = un}'
Then

P(N,(B) = 0) = P(é.ojn)

_nP(N (a5, b, =0)+[P(jﬂ; 6,) - []2(Cn)]-

ij=1
Now it is enough to show that

lim [P (J_m; Cpa) — [J P(0;,)] =o.

Using Lemma 1 we obtain

P 6~ [ 716

- [P() ) 4= []P(0) 4

j=1 iecE.

<P(A) ) 4u)— ] [P0+

j=17eE; i=1 icE;
+|”1E7P m ”P(nA‘in)
1 te

() 2 ((b5n] —[a;n])) + H (¢ (1) ([0;] — [a;m]))

< (¢ (u,)n) (r max (b; —a;) )+ 7/m) + (@ (u,)n) (max(b —a;)+1/n).

1<ji<r

1<i<r

Thus, if B is a finite sum on the segment (a;, b;], then

lim P (N, (B) = 0) = ” exp{—7(b;—a;)} = exp{—wm(B)},

Jj=1

Wwhere m is the Lebesgue measure. Therefore, using Theorem 1 we obtain
Theorem 2.

3. Application. Suppose that the sequence {X,: n € Z} satisfies the
assumption of Theorem 2 and that {N,: n € N} is defined as above.
From Theorem 2 we obtain the following fact:
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For every Borel set B whose boundary has Lebesgue measure zero

(m(0B) = 0) we have
B r
(8) lim P (N, (B) — 1) — o~mie B
00 r!

Moreover, the joint distribution of any finite number of N, (B,), ...
-evy N, (By) corresponding to disjoint B; (with m(0B;) = 0 for each 1) con-
verges to the product of the corresponding Poisson probabilities.

Let Z} be the (n—k+1)-st order statistic for {X,: n € Z}. Remark
that {N,(0,1]1< k} = {ZF > u,}. Hence and from (8) we have

k-1 .
,t‘l

limP(ZF < w,) =1— E et —.
n—o0 pyr: 3!
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PROCESY PUNKTOWE MINIMALNYCH STATYSTYK POZYCYJNYCH

STRESZCZENIE

Praca poswiecona jest teorii rozkladéw graniecznych ekstremalnych statystyk
pozycyjnych w stacjonarnym (w wezszym sensie) ciggu zmiennych losowych spelnia-
jacych warunek Bermana. Zdefiniowany zostal proces minimalnych statystyk pozy-
cyjnych i pokazano jego zbieznogé do procesu Poissona. W dowodzie twierdzenia i le-
matu wykorzystano metody podane przez Leadbettera w [4].



