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ON THE CONVERGENCE OF BHATTACHARYYA BOUNDS
IN THE MULTIPARAMETER CASE

1. Introduction. Blight and Rao [2] have considered the Bhatta-
charyya bounds for the unbiased estimation of a parametric function 7 (6)
when the sampling distribution is a member of an exponential family
with density f(¢; 6), with respect to a o-finite measure », which has the
property

olog{f(t; 0)}  _ _, _
s = V= (0)(t—90),

where V(0) = C,+C,0+C,6* for some constants Cy, C, and C,.

Seth [5] has proved that the Bhattacharyya matrix for this family
is diagonal. Shanbhag [6] has proved this family to be equivalent within
a linear transform to the family composed of the normal, gamma, Poisson,
binomial and negative binomial distributions. He has also shown that the
distribution assumptions are necessary as well as sufficient for the diago-
nality of the Bhattacharyya matrix. Using these results Blight and Rao
[2] have shown that the Bhattacharyya bounds converge to the variance
of the minimum variance unbiased estimator of the function z(0). This
Paper deals with the multiparameter case.

Assume that a random vector X = (X,, X,,..., X,) has a joint
Probability density function

f(@; 0) = f(w1, @ay ..oy @5 01y Oy ..., 6,)
with respect to a o-finite measure u, and let K (X) be an unbiased estimator
of a real function v(8) = v(6,, 0,, ..., 6,) with finite variance. Let ¥ > 1
be an integer. Put
L=('i1,7:2’ ...’7:'.), 0<":j, O<i1+'l:2+-.. +ir<k’

and ¢ = (i, 44y ...y %,) With similar properties. Bhattacharyya [1] has
Proved the following:
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Assume that

(1) the functions f(a; 8) and 7(#) have all partial derivatives with
respect to 0,, 0,, ..., 0, of order up to %,

ai1+i2+...+i,.f(m; 0) G _ @il+i2+...+ir-;(0)

fY = —— —, T = —
0071063 ... 00;r 0011003 ... 06ir’
r 1 00y r

and they can be calculated under the integral with respect to &;
(2) the expectations

PR I L i

exist and are finite; they form the matrix ||J (¢, ¢'; )|} called the genera-
lized Bhattacharyya matriz;

(3) there exists an inverse matrix
[ ey "5 O3 = I (¢, ¢'5 D)7

(4) the function K(x)f(a; @) is differentiable with respect to 6,, 0,, ..., 0,
under the integral with respect to & at least k times.
Then
| var {K (X)} > Z-r(‘)r(")J[z, V0],

where summation is running over all ¢, ¢'.

The right-hand side of this inequality is called the k-th generalized
Bhattacharyya bound.

To make calculations simpler, in the sequel we consider the case r = 2.
All results can easily be extended for more than two dimensions. Using
the result of Bhattacharyya [1] and assuming that the complete sufficient
vector statistic has independent components whose distributions satisfy
the regularity conditions of Blight and Rao [2] we prove that the se-
quence of the generalized Bhattacharyya bounds converges to the variance
of the best unbiased estimator of v(#) when k — oo. As an application of
our result we give, in Section 3 the Bhattacharyya bounds for the variance
of the minimum variance unbiased estimator of Pr(Y < X) when inde-
pendent samples are taken from one-parameter exponential distributions.

2. The main result. Let T = (T, T,) be a random vector, where T;
are independent random variables with probability density functions
f; = f;(t;; 6;,) with respect to a o-finite measure u; (¢ =1,2). Thus T
has the probability density function

(1) [ =1(t; 8) = fi(ts; 6,)f2(2,5 62)

with respect to measure u = u; X u,. We assume the following regularity
conditions: ‘ "
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I. 6 =(6,,0,) e 2 = Q, x2,, where 2, (¢ =1, 2) are open intervals
on the real line.

II. The distributions of the random variables T; belong to an expo-
nential family with the property

dlogf,

- 00,
where T; is a complete sufficient statistic for 6; and V;(6;) = 0 + 090, +
+CY6; for some constants OF), Cf), CP (i =1,2). Hence T = (T,, T,)
is the complete sufficient statistic for 6 = (6,, 0 )-

III. The denmty f(£; 8) can be differentiated with respect to 0,
and 0, under the integral Wlth respect to £ any number of times.

IV. The density f(f; #) and the parametric function t(8) admit
a convergent Taylor series expansion of two variables 0,, 0, at each 8 € Q
for almost all &.

Let ¢ = (41,%), 0<% (j =1,2), 0< 4, +4, <k (k=1,2,...), and
let ' = (¢;, 4,) with similar properties. Let
1 o1tf(t; 0)
f(t;0) 06706,
and J (¢ ) = (c, ';0) = Epfu(e)u(s)}. From the results of Seth [5]
and Blight and Rao [2] two lemmas follow.

LEMMA 1. If f(t; @) is of form (1) and conditions I, II and III are
satisfied, then

= V7U0,)(t—0;) (0, e ),

’“(‘)'= u(il,iz)(t; 0) =

I
where ) = — /]

u(e) = uf ‘)u"") =
f; a67

12’

(.7 = 17 2)’

and
JOV{IDY  if v =1, de., iy =i, G, =1
(2) I, t') = {3 Y{J3,)} if ¢ .h y U 1y %2 29
0 otherwise,
where {J{}* = {J(’)(B )Y =Eo {ul)} (j =1,2) are Bhattacharyya func-
tions (see 20 cmd {(JO¥ = 1 (1 =1,2).
It follows from formula (2) that the generalized Bhattacharyya matrix
le (¢, ¢')|| is diagonal.
LEMMA 2. Let #(0) = 1 and

(D(t) =®(;t,0) = ’u(c){J(c z’)}"”z,
{l’_ (215 %), O 3’ 0< iy +i, <k, k =1,2,....}.

If conditions 1, I1 and III are satisfied, then the set {D(0), D(i)} is ortho-
normal in £, (t, 0), the space of all functions of t = (t,,t,) having finite
second moments with respect to the density f(t; ) . .
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Notice that &(:) = Of) &), where ¢ = uf) {Jg)}‘1 (j =1, 2) are de-
fined in [2] for the one-parameter case.
Similarly as in [2] we prove now the main theorem.

THEOREM 1. Let K = K(T) be the minimum variance unbiased esti-
mator of the function (0) with finite variance. If conditions I-IV are satisfied
and K (t)f(L; 0) is differentiable with respect to 0, and 0, under the integral
with respect to t any number of times, then for 0 € 2

o k
#(0) 1 ’
var(K) = 22{ 261 06%—7 J}’)(Ol)Jﬂ;(ez)} .

k=1 j=0

Proof. Let 0y(8) = z(0) and

ortiez(9) 1
003002 JPJE)"

0.(0) =

Differentiating both sides of the equality

[ E@)f1(t:5 0:)falte; 0)dp(t) = 7(0)

i, times with respect to 6, and ¢, times with respect to 0, and using the
definition of @(:) we get

JE@®) @ ()f(5; 0)dp(t) = €.(0).

Since K € #,(t, ) and {1, ®(¢)} is orthonormal, by the Bessel ine-
quality (see [4], p. 1561) we have

Ch(0)+ D/ Ci(O) < o (8e ),

where the summation is running over all possible ¢ = (¢,, %) (0 < 4;,

0<t+4:,<k, bk =1,2,...). It therefore follows from the Riesz-Fischer
theorem (see [4], p. 153) that for each 0 e 2 there exists a function
K,y(t) e Z,(t, 0) such that

(3) By {K5(T)} = 03(0)+ 2 C:(8),
where

C.(0) = [E,(8)B()f(L; 0)du(t).

Hence we have

1 iy
Fr+iaz(9) fKa(t) F1+af(t; 0) 0) .

T o6t o0 2601 6% du(t)-
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Let 0 = 0, = (0, 0,) be fixed and evaluate the expectation
E){Ko(T)} of K(T) = K, (T), i.e.,

©o

B, (Ko(D)} = [ Ko(0(t; 0)au(t) = [ Kﬂt)Z%(% +a—i,f- ) au(t),

k=0

where ¢ = 6,— 0,4, h = 0,—0,, and

o \O_ o, & .,
(ae 9+ e, ) = 207 +( ) a0-1gg, 9 Mt +(k) Erk

Hence, putting

0

1 datief
0 — — J
Uit = Y (b 00) = = e gn

)
0=00

we obtain

oo 1 k _
(4) Eq {K,(T)} =fKo(t)Zﬁ{u?k,o)gk+(1)u?k—1,1)gk Rt .+
k=0

+ (i) o} 1085 002t

= fK (%) Z Z( )“(j k—g)g]hk_ S(t;5 0o)du(t).

Let us consider

T

By the Schwarz inequality this is less than or equal to

2] . 3
2, 2{ [ m@sts opaue) | [yt oaun| 5 () oo we-
=103(0 V' 028 ERSENEYL ijp =i
~fau 0+ 3 ol ggk—!(j)lgll =1 x
1/2
[f{'“’(l) 010)}* {u«g:)(ezo)}zfl(tl; 010)f2 (23 ezo)dﬂ(t)]

~lao+ 3 > ol oo)}m{Z'—(’——“" J§ (650 }{2 a2l g0,

r=0

( )’“(j - I W (85 0,)| du(t )}
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.. The last expression is finite in an open rectangle containing @,. This
follows from (3) and from the convergence of these series for the one-
parameter case (see [2]). The integration and summation operators in (4)
may be interchanged. Thus, for 0 belongmg to an open rectangle containing
6,, we have

. 1
B T} = 3 -k—(f)g’h“ [ Eottyuty s 5085 09t

oo k
NN (R, PTe)
—Z;k!(j)gh aoToor7 — “\9)

k=0

Hence E,{K,(T)—K(T)} = 0. Therefore, from the completeness
of T it follows that K, = K almost everywhere and

var (K |0;) = var(K,|6,) = D C3(6,).

Since @, is arbitrary, this completes the proof of the theorem.

3. Application. Let X,, X,,..., X, and Y,,Y,,..., Y,, be inde-
pendent samples. Assume that X; (¢ =1,2,...,n) have the one-para-
meter exponential distribution with density

f(w; 6,) ={

and that Y, (j =1, 2, ..., m) have the distribution with density f(y; 0,)
The statistic
= (1, Ts) = (2 X,, Y;)

is sufficient and complete for 8 = (0,, 0,). Tong [7], [8] and Johnson [3]
have derived the minimum' variance unbiased estimation of the function

1,’(0) == 01(01—"02)—1 = PI‘(Y< X)
which takes the form

n—1 T
3 -1y, e ) nso

6 'exp(—=x/6,) if x>0,
0 otherwise,

P (mn—1—3)!(m—-1—9)!\T,
(m—-1)!(n—1)! T\
Z(" (m—1—3)(n—1—2q)! (Tz) it T.> I

Using our result we can obtain the variance of P. It is easy to verify

that
) o1t (h) _ (4, + 4, —1)! (—1)1%%2 (4,6, —1,0,)

060100 (6, + 0,)i1 iz
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Blight and Rao [2] have derived the Bhattacharyya functions for
the exponential distribution

(n+2—1)!4!
TV = ——
(n—1)163
and similarly for
IO 6)F = (m-41i—1)!4!

(m—1)!6%
Hence

o K
s _ N N FTO) P (=) m—1)1(6, 6%
var(P) —g%{%{@og—j} (n+j—1)(m+k—j—1)151(k—f)1"

Using (5) and putting ¢ = 0,/6, we get

ok k)2 . 2 o(k—F
var(fy = 3 ' (J . {J(1+e)—k} ¢* ;+
e (n+q—1)(m—|—k—q—1) B (14 o)
J k—j
Table 1 contains the values of the first four generalized Bhattacharyya
bounds B foro =}, 4, $,1andn =m =5;n =m =10;n = 5, m = 10;
n = 20, m = 10. It is seen that the convergence is fairly fast in all cases.

TABLE 1. Generalized Bhattacharyya bounds for the best unbiased estimator of
Pr(Y < X) in the exponential case multiplied by 102

n=m=2~5 n=m=10
¢ B, B B, B, B, B, B, B,
1/4 10.24 11.76 12.16 12.26 0.51 1.01 1.06 1.07
1/2 19.74 19.94 20.29 20.36 9.87 10.42 10.47 10.48
3/4 23.99 26.08 26.41 26.45 11.99 12.56 12.62 12.62
1 25.00 27.08 27.40 27.43 12.50 13.07 13.11 13.11
n =25 m=10 n =20, m =10
B, B, Bj B, B, B, B3 B,
1/4 0.77 1.80 2.12 2.22 3.84 3.98 3.99 3.99
1/2 14.81 16.52 19.47 20.13 7.40 7.63 7.65 7.65
3/4 17.99 19.53 19.74 19.78 8.99 9.30 9.31 9.31
1 18.75 21.30 21.46 21.50 9.38 9.73 9.76 9.76
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J. BARTOSZE WICZ (Wroclaw)

O ZBIEZNOSCI OGRANICZEN BHATTACHARYYI
W PRZYPADKU WIELOPARAMETROWYM

STRESZCZENIE

‘W pracy rozpatrzono uogdlnione ograniczenia Bhattacharyyi dla nieobcigzonej
estymacji funkeji parametrycznej wielu zmiennych, gdy wektor statystyk dosta-
tecznych ma niezaleine skladowe o rozkladach z jednoparametrowej rodziny wyklad-
niczej. Udowodniono, ze ciag uogélnionych ograniczenn Bhattacharyyi jest zbieiny
do wariancji najlepszego nieobcigzonego estymatora funkeji parametrycznej. Wynik
ten zastosowano do obliczenia wariancji nieobcigZonego estymatora z jednostajnie
minimalng wariancja prawdopodobienistwa Pr(Y < X), gdzie X i Y s3 niezalesnymi
zmiennymi losowymi o rozkladach wykladniczych.



