ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVI, 1 (1977)

I. KOPOCINSKA (Wroclaw)

PIECEWISE MARKOV PROCESSES IN DISCRETE TIME
AND THEIR CERTAIN EXTENSIONS

The definition of a piecewise Markov process in discrete time is anal-
ogous to that of Kuczura [6] who considered the case of continuous time.
Processes with homogeneous Markovian segments and their extensions
%0 non-homogeneous segments are analyzed. The paper gives the rela-
tions between the stationary probability distributions of the state of
the process and certain imbedded Markov chains.

1. INTRODUCTION

Numerous problems in queueing and reliability theory can be descri-
bed by using processes which, starting from some initial condition, behave
a8 Markovian in some time segment the length of which is defined at
the beginning of the segment, then have a jump at the end of the segment
and again behave as Markovian in the next segment with a new initial
condition. Stochastic processes having such a structure are called piece-
wise Markovian (see Kuczura [6] and Cinlar [1]).

Kuczura considered in queueing theory such piecewise Markov
Processes with jumps, processes which were dependent upon a contin-
uous time parameter. Using renewal theory methods, Kuczura investi-
gated the ralations between the limit probability distributions of the
Pprocess and those of some imbedded Markov chains.

New proofs and some generalizations of these results may be found
in [3] where methods published in [4] were used. This paper contains a mod-
ification of problems, methods and results for the case of discrete time.
The paper contains also an analysis of piecewise Markov processes with
non-homogeneous segments. The results have been applied to mass serv-

ice systems, computer systems, teleinformation networks, ete. (see [7]
and [8]).
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2. PIECEWISE MARKOV PROCESSES IN DISCRETE TIME

2.1. Definitions and notation. Let S be a discrete state space. The
stochastic process {Y(¢),t =0,1,...} valued on S is called piecewise
Markovian if

(a) there exists a sequence 0 = w, < w, < w, < ... of integer-valued
random variables such that for every m = 1,2,... the process {Y (),
Wy <t < w,} is a homogeneous Markov chain with transition matrix
(Py,x) depending upon the condition {Y (w,,_,) = k};

(b) at the: moments w,, (m = 1,2, ...) the change of the state of the
process is the sum of two independent transitions: a Markovian one with
transition probability matrix (P;,) and a transition with transition
probability matrix (p;);

(c) for every m =1,2,... and ke 8, the probabilities

Pr{wm—wm—l =n| Y(wm—l) = k} = fk(n) (n = 17 27 °'°)
form a distribution independent of m.

The moments w,, (m = 1, 2, ...) are called process regeneration moments,
and the intervals w,,_, <t < w,, — Markov segments. The change of the
state of the process in the interval w,, , <t < w,, is called a Markovian
transition. At the moments of process regeneration the transition with
probability matrix (p4) is called a regeneration transition.

2.2, Imbedded Markov chains and imbedded renewal streams. Assume,
for simplicity, that the segment lengths w,, — w,,_, (m = 1, 2, ...) are inde-
pendent and identically distributed, f,.(n) = f(n) (n =1,2,...), and let
(Pijx) = (P;) be independent of %.

Let {¥(t),¢ = 0,1, ...} be a piecewise Markov process characterized
by the triple ({f(n)}, (p;), (P;)). Using the split of the state change at
& regeneration moment into a Markovian state change and a regenerative
state change, denote by Y~ (wy) (m =1,2,...) the state of the process
{Y(#),t =0,1,...} at the moment w,, after the Markovian transition

and before the regenerative transition. Consider now the following two
sequences of random variables:

B, =Y (w,) and 8, ,=Y@w,.,) (m=1,2,..).

As may easily be seen, they form homogeneous Markov chains.
Introducing for the transition probabilities the notation

r‘l'j :Pr{Rm :j]Rm_]_ =i}, Si]’ ZPI'{Sm :jISm—l :’]/}’
we have

0 o0

(21) 75 = Y pa D FMPy(n), s5= 3fm) Y Py(m)py (3,5 €8)

keS n=1 n=1 keS
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(further on, the summation region will be omitted in case of summation
over 8), where (P,-k(fn)) is the n-th power of matrix (P;).

Assume that the limit probability distributions exist (and that they
are independent of the initial condition):

lim Pr{R, = j|R, =i} = ¢;, lmPr{s, —=jl8 =i} =0; (i,jed).
—>00 m—>o0

m

The limit probabilities satisty the equation systems

(2.2) 0 = ZQ;‘"@'; o; = Zo'isij (je8),

and the entire probability conditions

ZQ]- =Za,- =1.
]

Also, since the random variables R, and S,, are related by the rege-
nerative transition, the relation

(2:3) 5 =epy (je)

between the distributions {g¢;} and {o;} holds.

Consider now the stream of regenerative transitions to the state j
(j €8) in the process {Y(t),t =0,1,...}. The time intervals between
successive signals in this stream are independent identically distributed
random variables, thus they form an imbedded renewal stream. Assume
that the mean interval between signals of this stream is finite and denote
it by 1/u;.

THEOREM 2.1. In the piecewise Markov process {¥Y(1),t = 0,1, ...},
the sequences {u;} and {o;}, if they exist, are related by

(2.4) w=r0; (jeA),

where

—1— = énf(fn).

Proof. Let f;(n) for n =1,2,... (i,j €8) be the distribution of
the time interval from the moment of the regenerative transition to the
state ¢ to the moment of the regenerative transition to the state j. Further
put

Fym) = D fyk) (n=0,1,..),

k=n+1
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2 5(n) = an,-j(n), -

=1

The quantities F;;(n) satisfy the equation system

F;4(0) = F(0),
(2.5)

Fy(n) = F(n)+ Z f(m) Zsz(m) > paFy(n—m)
INES] .
(n=1,2,...),
where
Z f(k) (n=0,1,...).
k=n+1

Summation of (2.5) over n from 0 to oo leads to

_=_+Zf(m Zsz Zpkl

1,1
and because of (2.1) we have
1 1 1
gV i M

Let us multiply both sides of these equalities by o¢; and sum them
over 4. Using (2.2) we obtain

o; 1 Z 1 o 1
E = — oo— o ——=—,
Hij 4 1,1#5 My i v

This completes fﬁhe proof of Theorem 2.1.
2.3. Limit distributions. Consider the probabilities
Q;¢) =Pr{Y(¥) =4} (¢=0,1,...)
and the limit probabilities
g; =lim@,(t) (je®).

t—o0
The form of the limit probability distribution of a piecewise Markov
process and the relations between it and the limit probability distri-
butions of the imbedded Markov chains {R,} and {S,,} are given by the
following two theorems:

THEOREM 2.2. In the piecewise Markov process {¥Y (t),t =0,1,...},
if the probability distribution {f(n)} is mon-periodic, the limit distributions

\
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{g;} ewist and are of the form

(2.6) g = D m > F(m)Py(n) (j€8),
k n=0
where
Fn)= D f(k) (n=0,1,..).
k=n+1

THEOREM 2.3. In the piecewise Markov process {Y (t),t =0,1, e b
the limit probability distributions {g;}, {o;} and {o;}, if they ewist, satisfy
the system of equations

(2‘7) qj+11Qj = ZQiPij+v°'j (j € S)o

Proof of Theorem 2.2. Let u,(n) be the renewal probability at
the moment » in the renewal stream of regenerative transitions to the
state k. It is easy to see that for Y (0) = i and ¢, j € S we have

¢

(2.8) Q;(t) = F@OP,(H)+ D) D w(n)F(t—n)Py(t—n)
k

n=1

: t=1,2,..).

The first right-hand side term of the sum in (2.8) tends to zero with
1 - oo. Using the discrete version of the fundamental renewal theorem
we obtain (see also Cinlar [1]) convergency of the second right-hand side
term of the sum in (2.8) to the expression being the right-hand side of (2.6).
This completes the proof of Theorem 2.2.

Proof of Theorem 2.3. Let X(f) be the time length from the
moment ¢ to the nearest regeneration moment. The stochastic process
{¥ (@), X(t),t =0,1,...} is a Markov chain. Investigation of the limit
properties of this chain can be restricted to stationary prpcesses which
are defined similarly to piecewise Markov processes but have a suitable
modification in the first segment. Write, for j € 8,

P;(@) =Pr{Y(t) =j, X(t) =a} (2 =1,2,...).

Analyzing the state of the process at the moments ¢ and ¢+ 1 we obtain,
for x =1,2,... and jeS&,

Pr{Y(i+1) =j, X(t+1) =a} = Y Pr{¥ (1) =i, X(1) = @ +1}P;+

+ DPr{Y (1) =i, X(t) =1} D Pypyf(@).
A I
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Hence
(2.9) Py(x) = ‘Ww+n&+2P Zhww

D)

Summation of (2.9) over x from 1 to oo gives
(2.10) 2 [q:—Pi(1)]1P;+ ZP 1>2P,,pb
Consider now the expressions P;(1). Let
P(z) = Pr{X (1) =2} = D P;(a);
summation of (2.9) over j gives J

P(z) = P(z+1)+P(L)f(=).

Hence P(k+1) = P(1)F(k) (k =0,1,...), and summation over %
from 0 to oo leads to P(1) = ».
Notice that

(211) Pi(1) =Pr{Y(t) =i, X(t) = 1}
=Pr{Y(t) =X () =1}Pr{X() =1} = »P
where P; = Pr{Y (f) =¢]|X(t) = 1}. Insertion of (2.11) into (2. 10) gives

=Z%Pij_”ZPiPﬁ"!"’ZP:ZP“p”'
- : 5 7

Using the obvious relations

*
EPiPij = 05,
1

and also (2.3), we obtain Theorem 2.3.

2.4. Application. Let us consider the discrete-time queueing system
(M® 4+ @IB)/M/1 in which the input stream is the sum of two streams: M?
and GIE. The first of them is a discrete, batched Poisson stream, thus
the numbers of arrivals A (f) at the moments { = 1, 2, ... are independent
random variables having the same distribution

jp,-=PI‘{A(t) =.7} (j=0717“-)-

The second stream is a discrete, batched GI-stream, thus the inter-
arrival lengths {w,} are independent, have the same distribution

Pr{w,, —w,_, = n} = f(n) (n=1,2,...),

and the numbers of arrivals A*(m) at the moments w,, are independent
random variables with the same distribution

p; =Pr{d*(m) =j} (j=0,1,...).
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In the considered queueing system, the distribution of service length
is geometrical. Let B(f) be the virtual number of services in unit time,
thus let B(¢) (¢t =1,2,...) be independent random variables with the
distribution

Pr{B(t) =0} =1—b, Pr{B() =1} =b.

In particular, if b = 1, the service time is deterministic.

Let Y(f) be the number of items in the system at the moment
t =0,1,... As can easily be seen, this is a piecewise Markov process
({f(n)}, (py), (Py)), where the moments of arrivals in the stream GI”
are regeneration moments in this process.

To complete the description of the process {¥Y(t),t =0,1,...} it
is sufficient to find the matrices of regenerative transitions (p;) and of
Markov transitions (P;). It is easy to see that, form =1, 2, ...,

Y(t+1) (Y(t —BE+1))T+A@E+1), +1 £ w,,
W) = [ —B@+1)" + A1) |imw, 15
( m) (m)+A*(m),

where (X)* = max(0, X). Thus for 7,5 € § we have

(2.12)

.. 0 for j <<,
2013 e = * g — =
( ) p‘l] Pr{A (t) .7 7'} {p;‘ ; fOI‘ j 2 ’&’
(2.14) P; =Pr{(i—B(t+1))* + A(t+1) = j}
D for ¢ =0,
bp;j_ip+(A—b)p;_; fori>0,j>i—1,
0 otherwise.

Knowing the probability distribution {f(n)} and the matrices (p,)
and (P;) one can, using Theorem 2.3, find the relation between the sta-
tionary probability distributions of the system state at the moments
t=0,1,... and the state of the system at the arrival moments of the
stream GI®. This relation is formulated with the use of the generating
functions of the appropriate probability distributions.

THEOREM 2.4. In the queueing system (MP 4+ GIB)|M/[1, the general-
ing functions Q(2), R(2) and S(z) of the probability distributions {g;}, {o;}
and {o;}, respectively, satisfy the equalztws

(2.15) 8(z) = R(2)P*(2),

(2.16)  Q(2)+»R(2) = (2)[qo+(Q qo)( +1- b)]+v8(z),

where P*(2) and P(z) are the generating functions of the distributions {p;}
and {p;}, respectively.
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Proof. Formula (2.15) is an immediate consequence of (2.3)
and (2.13). Calculate now

(2.17) sz ZQiPij = {qo szpj+ZQi 2 zj{bpi—i+l+(1—b)p:i—i)
j=o i1

— 2@ |0+ (@0 - 0 (+1-3) |

Hence and from (2.7) we obtain formula (2.16). This completes the
proof of Theorem 2.4.

Remark. The probability ¢, in (2.16) is expressed by the formula
1
G =1—7 [P'(1)+»8' (1) —»R'(1)],

where P’(1), 8’(1) and R’(1) are mean values in the probability distri-
butions {p;}, {o;} and {p;}, respectively.

Let W(t) be the virtual waiting time at the moment ¢ =0,1,...
It can easily be noticed that this is a piecewise Markov process having
the same properties as the process {Y (t),t =0,1,...}.

Indeed, the regeneration moments of these processes are identical
and the matrices of Markovian and regenerative transitions in the pro-
cess {W(¢),t =0,1,...} are found from the equalities, being analogous
to (2.12),

W(E+1) = (WH—-1)*+Z(@t+1), t+1 #w,,
W (wy) = [[(WO =1 +Z0t+D]w, 1y  W(wn) = W (wy)+2Z%(m),

where Z(t) is the sum of service times of all ifems in the bateh with distri-
bution of the number of items being equal to {p;}, and Z*(m) is the sum
of service times of all items in the batch with distribution of the number
of items being equal to {p;}.

3. GENERALIZED PIECEWISE MARKOV PROCESSES IN DISCRETE TIME

3.1. Definitions and motation. Lot S be a discrete state space. The
stochastic process {¥ (t),t = 0,1, ...} valued on S is called a generalized
piecewise Markov process if

(@) there exists a sequence 0 = w, < w; < W, < Wy < w, ... of inte-
ger-valued random variables such that, for everym = 0,1, ...anda =0, 1
8atisfying wom i1 —Womyq =2, the process {Y(f), Womia <t < Wopmiiial
is a homogeneous Markov chain with transition probability matrix (P{,)
depending upon the condition {¥ (w,, +a) = k};
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(b) at the moments w,,,., (m =0,1,...; a = 0, 1), for which w,,, .,
7 Waopm41—q DoOlds, the change of the state of the process {Y (t),t> 0} is
the sum of two independent consecutive transitions: a Markovian one with
transition matrix (P§,®) depending on the condition {¥ (wy,_;.4) = k}
and a transition with probability matrix (p;~*) (e =0, 1; i,j, keS);

(¢) at the moments w,, (m = 0,1,...) satisfying w,,, = wy,,,, the
change of the state of the process {Y (t), ¢t > 0} is the sum of three inde-
pendent consecutive transitions: a Markovian one with transition proba-
bility matrix (P{)),) depending upon the condition {¥ (wy,_,) = k}, a tran-

sition with probability matrix (Y), and a transition with probability
matrix (p{));

(d) for every m =0,1,..., a =0,1, and ke, the probability
distributiong

Pr{w21n+1+a—w2m+a = nl Y(w2m+a = k} —f(a)(n
n=a,a+1,...), f<1)(0 =0, f9(0) <1,
do not depend upon m.

The moments w,, (m = 1,2,...) are called process regeneration mo-
ments, and the intervals w,,_, <t < w, — Markov segments. The change
of the process state in the interval Wy <t < w, is called a Markov
transition; at regeneration moments two transitions are distinguished:
& Markovian one with transition matrix identical with that of the pre-
ceding segment, and a transition called regenerative.

The breakdown process {a(t),t = 0,1, ...} related to a generalized
Diecewise Markov process is

0 £ ¢
a(t)={ OF Wam S ¥ < Wom (m=0,1,...),

1 for wypi ) <t < Wapys

where the moments w,, are defined for the generalized piecewise Markov

process. The intervals wy,,, <t < Wy,,,,, in the breakdown process
are called breakdown segments for a = 0 and working segments for a = 1.

3.2. Imbedded Markov chains. Assume, for simplicity, that for every
@ = 0,1 the segment lengths Wy, ) 6—Wop,a (M =0,1,...) are inde-
Pendent, identically distributed and that the Markov transition matrices
do not depend upon k:

fPm) =fDm), (P@) =P (n=a, at+l,...; a=0,1).

Using the decomposition of the change of the process state at a regen-
eration moment into Markovian and regenerative state changes, denote
by Y~ (w,,) the state of the process {¥ (¢), > 0} at the moment w,, after
the Markovian transition but before the regenerative transition.
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Let {Y(t),t =0,1,...} be a generalized piecewise Markov process
characterized by ({f* (n) } (pg”), (PY), a = 0, 1). Consider four sequences
of random variables,

R2m+a - Y— (w2m+a) (m = 17 27 )7 Sg‘:rl+a = Y(w2m+a) (m= 0, 1, ...),

where ¢ = 0, 1. If w,, = w,,,, then Y (w,,) = ¥~ (ws,,). They form
homogeneous Markov chains, since {w,, .} for every ¢ = 0,1 is the
sequence of regeneration moments in the process {Y(t),# =0,1,...}.
Denote by (r{?) the transition matrices for the imbedded chains {R{) . }.
To determine the matrix (r)) consider four transition probability matrices:

(i) the matrix (pﬁ.}’) of the regenerative transition at the end of
a working segment;

(ii) the matrix (p{}?) of the transition of the Markov process in the
breakdown segment,

[+ <]

(P?) = DO (n) (PP
n=0
(iii) the matrix (p‘“’) of the regenerative transition at the end of the

breakdown segment;
(iv) the matrix (p{'") of the transition of the Markov process in
the working segment,

[e.0]

(p") = D) fO(n)(PR)".
Y n;: 1

The imbedded Markov chain {R{"} has, therefore, a transition proba-
bility matrix equal to the product

(r) = () (25" (PF) (P").

The transition probability matrix for the imbedded Markov chain
{R{) .} can be formed analogously and is of the form

(5 = @) (25" (8P (pF).
In the same way the matrices (s{?) for the Markov chains {S{),,
(@ =0,1) can be found.
Assume that the following limit probability distributions, being
independent of the initial condition, exist:
LmPr{R(),, = j|RY, =4} = ¢, lim Pr{8{%,,=j|8 = i}= o

m—oo m—»o0
(@ =0,1).
The limit probabilities satisfy the equalities

o = 29‘“)7”2’), ol = V‘ (@) g(a)

9
1
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and the entire probability conditions
Zg}a) =Zo§-") =1 (a=0,1).
j i
The random variables R, and R ., are related by the regenerative

transition (i) and the Markovian transition (ii) in the breakdown segment,
thus we have

(3.1) Q’(,l) - Zggo»,g,o),
T

where (r(:%) = (p)(p{y”). The random variables 8{7., and R{,, are

related by the regenerative transition with matrix (p{i~®), thus we have

i
&2 A = Depl™.
7

3.3. Limit distributions. Consider the state probabilities
Q) =Pr{Y(t) =j,a(t) =a} (¢ =0,1,...; a=0,1; je&)
and the limit probabilities
¢\ :tlimQ](“)(t) (a =0,1; jeb).

The following theorem gives the relation between the limit proba-
bility distributions of the state of the process {Y(®),a(t),t =0,1,...}
and the limit probability distributions of the state of the imbedded Markov
chains.

THEOREM 3.1. In the generalized piecewise Markov process {¥ (%),
t=0,1,...}, the limit probability distributions {¢}, {o*} and {c}
(@ = 0,1), if they exist, satisfy the equation system

(3.3) q}“)+v9§.1‘a) = E'qg“)ng)+va}“) (@ =0,1; jeB),
[
where

1 00

2

=0 0 @ Z nf@ (n).
n=1

14

Proof of Theorem 3.1. Let X (t) denote the time to the nearest
regeneration point after the moment . The process {Y (i), a(t), X (1),
t =0,1,...} is a Markov chain determined on the states

(jya,®)e8 =8x{0,1} x{1,2,...}.

. The investigation of the limit properties of the characteristics of
this process can be restricted to stationary processes which are defined
analogously, with an appropriate modification of the process in the first

3 — Zastosow. Matem. 16.1



34 I. Kopocinsgka

and second segments. Write
(3.4) PP (x) =Pr{Y(t) =j,a(t) =a,X(t) =2} ((j,a,2)ed).

Analyzing the state of the process at the moments ¢ and ¢t +1 we
obtain, for # =1,2,... and j €8,

Pr{Y(t+1) =j,a(t+1) =0,X(t+1) =a}
=2Pr{Y(t) =4,a(t) =0, X(t) =$+1}PS-?’+

+ DPr{Y(t) =i, a(t) =1, X(t) = 1} ¥ PPp{PfO ()
i ]

PT{Y(t+1) =j, a(t+1) = 1’X(t+1) =x}
=ZPI'{Y(t) :7:, a(t) =1’X(t) =m+1}_P£]1)—|—

+ MPr{Y(t) =i, a(t) =0, X(t) =1} 2P$?>p§;?’f‘“<x)+

+ MPr{¥Y () = i,a(t) =1, X (1) =1} ZP‘” Zpﬁ’f“” (0)pPf ().

1

Using (3.4) we have
PO(x Z‘ PO (x+1) PO + Z P®(1) 2 PPpD 1O (),

(3.5)
PP(@) = D PO@@+1)PP+ D PO(1) Y PPpPfM (2) +
T T i

+ Y PO) Y PP N pP 0 (0)p@ D ().
T l r
Summation of (3.5) over 2 from 1 to oo gives

o = X [@? —PPWIPY+ PP (1) Y PP L -1 0)),
l

(3.6)
0 = X[ —POIRY+ 3P0 ) PPyl +
T i

+ PO YIPP Yo (0)pF.
t i r
Consider now the expressions P{” (1) for a = 0,1, and i € 8. Let
PO(z) = Y P (x)
Summation of (3.5) over j leads to
PO@) = PO(a+1)+PY(1)1 ()
PO(@) = PY(0+1) + PO(1)fO(2) + PO (1)1 (0)/ (a)



Piecewise Markov processes 35

Hence

1
(3.7) Pr{a(t) =a,X(t) =2} = P?@=) = vF(x—1), — = MOEIPHON

Notice that

(3.8) PO1) =Pr{Y(t) =j,a (t) =a,X(t) =1}
= Pr{a(t) = a, X(t) = 1}Pr{Y () = jla(t) = a, X(f) =1}
= » F@(0) P},

where P;@ — Pr{Y(t) =jla(t) = a, X(t) = 1}.

Analyzing the state of the process {¥Y (#),t = 0, 1, ...} at the moments
Wamiq a0d w,,,, —1 (& = 0,1), by the definitions of the distributions
P*(a) a
{P;'”} and {o®) we obtain

ZP*(l)P(l) —
1O 3P 3 PRpY +(1-19(0) 2 PIOP) = of.
1 k i

Thus, by (3.8) and (3.2), we have
ZP(I) l)P(l) = vp (0)

DIPIWPY = v —fO(0)q  (je8).

Using (3.6) and (3.2) we obtain Theorem 3.1.

3.4. Application. The generalized piecewise Markov processes in
discrete time can be used to analyze queueing systems with priorities.
In applications, they may, for example, be found in mathematical models
of computer communication networks with time sharing (see [7] and [8]).

Consider a queueing system with two priority classes. Assume that
the priority is pre-emptive and that the service of an item which has been
interrupted is finished after servicing items with higher priority.

In the analysis of the service of lower priority items, the presence
of higher priority items in the system can be interpreted as service line
breakdown. The breakdown time distribution is the distribution of busy
time of the system by higher priority items, and the working time of the
service line is the time of waiting for a higher priority item.

Assume that the arrival streams of both priority classes are discrete
batehed Poisson streams, thus the numbers of arrivals A () at the moments
t=1,2,... are independent random variables with the same distribu-
tion {p,}. Assume that the system has one service line and that the service



36 I. Kopocinsgka

time is geometrically distributed with characteristies given in Section 2.4.
We do not deal with the number of items with higher priority, since
the system M?%/M/1 is well known. We are, however, interested in the
number of items with lower priority in the system or, equivalently, in
the number of items in the system MZ/M /1 with service line breakdowns.
Let {Y(t),t =0,1,...} be the number of items in the system and
let {a(t),t = 0,1,...} denote the breakdown process of the service line.
It is easily seen that {¥ (t),t = 0, 1, ...} is a generalized piecewise Markov
process, and {a(?),¢? =0, 1, ...} is the breakdown process related to it.

THEOREM 3.2. In the queueing system MPB|M |1 with service line break-
downs, the generating functions Q@ (z), R®¥(2) and 89 (z) (a = 0,1) of the
distributions {¢'™}, {0} and {d{"} (a = 0, 1), respectively, satisfy the equal-
ities
(3.9) QW (2) +vRW(2) = QO (2)P(2) +v8O(2),

b
(3.10) QW(2)+vRO(2) = [qo+ (QW (z)—%)(; +1 —b)] P(2) +v80(2),

(3.11) RO(z) = 89(2), RY(2) =8V(2),
(3.12) RM(2) = R (2) FO(P(2)),

where P(z) is the generating function of the distribution {p;}, and F©(2)
is the generating function of the distribution of service line breakdown dura-
tion.

Proof. Consider the process {Y(¢),a(t),? =0,1,...}. It is not
difficult to see that ’

Y(+1) = (Y(@)—B(@E+1)a(t+1)T+A(t+1) (¢t =0,1,...).
The transition matrices on the Markov segments are thus of the form

0 for j <1,

(3.13) PO — Py =Py,

Di; for j > 1,

where (P;) is given by (2.14), and the regenerative transition matrices
are identity transition matrices

(3.14) (Pfé”) = (d5) (a =0,1).

Using (3.3), (3.13) and (2.17), we get (3.9) and (3.10). Formula (3.11)
follows from (3.14) and (3.2). Notice that the number of arrivals in the
breakdown segment is equal to the sum of a random number of indepen-
dent batches with the same distribution {p;}, where the number of batch-









