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ON SYSTEM RELIABILITY
UNDER RANDOM LOAD OF ELEMENTS

0. In this note the reliability of elements with random failure rate
function and the systems consisting of such elements are considered.
We suppose that it forms a probabilistic description of elements and systems
having some repertoire of tasks or working in a random environment when
the tasks or environmental conditions are randomly varying, causing an
unequal load of elements. Assuming that the failure rate function of an
element is a semi-Markov process we find the reliability function of an
element and its limiting properties. Considering systems of elements with
randomly varying failure rate function of elements we prove that if the
failure rate function of elements depends upon the random environment,
then the working times of clements of the system are random variables
by mixture positively dependent and if this failure rate function of elements
depends upon the number of working elements in the system, then the
working times of elements are associated random variables. These prop-
erties can be used to estimate the system reliability by the marginal reli-
abilities of eclements (see [10] and [3]).

1. Reliability of an element. Let us consider an clement of a system
and assume that its load varies, for example, depending on the task per-
formed by the system, on the state of other elements of the system or on
the random environment. Strictly speaking, we assume that the failure
rate function of an element is a random process; the aim of our considera-
tions is the reliability function of an element and its limiting properties.
It is easy to give examples of such systems (see [9]), e.g. the motor of
a fishing ship used for the motion of the ship during the trip, for the ma-
noeuvres in the port and for the driving of the board processing plants,
and also the combine harvester used for harvest and threshing, stationary
threshing, ete.

Let A(t), t > 0, denote the semi-Markov process described on a finite
state set A = {4;: jeJ}, where J = {1,2,...,m} is defined in Pyke’s
sense [8] by the regeneration moments ?,,n € N, where N = {0,1, ...},
% =0, and the homogeneous Markov chain A4, = A(f,), n € N. This
Process is characterized by the pair (F,., (p,-,)), where F; denotes the prob-
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ability distribution function of the random variable #,—1,_, under the
condition 4, _, = A; and (p;) denotes the transition probability matrix
of the Markov chain 4,, n e N. We usually assume that there exist an
expected value u, of the probability distribution function F; and a limiting
probability distribution o;, j € J, of the chain 4,, n € N. Under this as-
sumption the limiting probabilities of the process A4(t), ¢ >> 0, are of the
form

¢ = .“1'06/2 woy, ied.

Here and in the sequel, having a summation over the set J, we omit
the summation bounds. _

Let A(t), t = 0, be the failure rate process of an element and let Z
denote its working time. The reliability function of an element under the
initial condition A4, = 4; is now of the form

(1) Pyz) =Pr(Z>a|dy=A) = E(exp[—f/l(u)du] j 4, = 1),

red.

THEOREM 1. If the failure rate function of an element is a semi- Markov
process A(t), t = 0, then the reliability functions P;, i € J, satisfy the system
of equations

T
(2) Py(2) = exp[— 4zl (1 —Fy(@))+ [ D exp[ — A4 u]p;Pi(e—u)dFy(u),
0
ted.
Passing in (2) to the Laplace transform

Pl(s) = [ expl—saPialdn, fi(0) = [ expl—saldlie), e,

we obtain
COROLLARY 1. The functions P;(s), i ed, satisfy the system of linear
equations
1—f7(s+24)
s+ 4,

Z{Oij—pijf:(s"*'li))P;(s) = , ded,

where oy is Kronecker’s delta.

Example 1. Consider an m-element system with independent working
times of the elements and common exponential probability distribution
function with parameter 1. Let m(t), ¢t > 0, denote the number of working
elements at the moment ¢ and let A(f) = 4,,, given the sequence iy, 4,, ...
«.ey Ay. Considering A(t), t > 0, as the failure rate process of an element
we have
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Fi(@) =1—exp[—ilz], py=04u, ¢4 Jed.

Hence, using Theorem 1 for the reliability functions P,(x), we get
the following system of equations:

Py@) = exp[— (A +id)al+ [ exp[—(4+id)u]idP;_(s—w)du, ied,
Py(x) = exp[ — i z].

The function P,,(x) can be found by the m-fold integration of expo-
nential functions. It is easy to see that if 4, = 4, i =0,1,...,m, then
P, (%) = exp[ — 1z].

COROLLARY 2. The expected values v, = BE(Z | Ay = A), i €d, satisfy
the system of equations

2 (65— iS5 (A} w; = 1_);: (%) , ted.

()

THEOREM 2. If the failure ratg function of an element is the sems- M arkov
Process A(t), t > 0, then the limiting distribution {o;} of the chain {A,} with
N—>o0 exists and does not depend on the initial state A, = A;, and if 4 = a4,
Jjed, 20, then

lim P,(x/3) = exp[—ax], ie€d,
a0

where

a = Za,-p,-a,- /2 K9

Proof of Theorem 1. Let Y denote the random variable exponen-
tially distributed with parameter i; which does not depend upon #,. To
find the reliability function Pr(Z > x | 4, = 4;) we consider two events:
the first of them is ¢, > xz, Y > xz, and the second one is 0 <, <z, ¥ > t;;
we assume also that the element does not fail in the interval (¢,, #]. Hence

+ [ YPr(Y > w)Pr(4, = 4 | 4y = R)Pr(Z > a—u | 4, = k)dF;(u).

Substituting the notation we have Theorem 1.

~ Proof of Theorem 2. Let A(t) = A(t)/A. Independently of the
Initial condition 4 (0) we have (see [1])

1 T
]. _— A d p— — -
im ! (u)du E a;q; = a

. T—o0 T
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with probability 1. Hence, using the continuity of the exponential function,
we get
42

limP; "jf) = limE(exp[—- f A(u)du] | 4o = l.-)

A0 2—0 °
1773

_ A
= llmE(exp[—-tTJ A(’“)d’“] | 4(0) = ai)

A—>0
1
= exp[—tlimi,—f A(u)du | A(0) = }.,-] = exp[ —at].
TI'—->o0 .
0

2. A particular case. Assume that A(t), ¢t > 0, is a Markov process
with failure rate matrix (0;), where

Gt'i:@i =29i‘i’ iEJ.

15
Considering the Markov process as a semi-Markov process, we get
Fi(r) =1—exp[—06;x], Py = @ii/@z“for t#j, ps=0, 1,jed.
It follows from Theorem 1 that

(3) Pyx) =exp[—(A4+0)al+ [ D 6,exp[—(4+6,)ulp;P;(z—w)du,

0 Jj#i
1ed.
Hence
z
P(x) =ei:p[—0:w]+fngp[—@:u]@;-Pj(w—u)du,

0 j#Ei
where
(4) @5 =0, for i #j, O] =1+6;, i,jed.

Consider the Markov process A*(t), ¢ > 0, described on m+1 states
0,1,...,m with the absorbing state 0. For the transition rate matrix (4),
where in addition

@:0 = Ay @(‘; =0, @o*i =0, ted,
and for the transition probabilities Pj;(t) for the process A*(2), {i>0
we get from (3) (see [2]) the following

COROLLARY 3. If T 48 the absorbing time of the process A(t), 1= 0,
then

Pi(@) =Pr(Z>wx|dy = 4) = Pr(T > x| A*(0) = i

= 1-Pj(@) = D Py().

=1
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3. Generalization. Assume that A(f), £>0, is a piecewise Markov
process defined on the set A, characterized by the triple (¥, (py), 6%),
where (see [5] and [6]) by F, we denote the probability distribution
function of length of the Markov segment under the initial condition
4(0) = 2,, by (p4) — the transition probability matrix at the moment
of regeneration of the process, and by %) — the transition rate matrix
of the process in the Markov segment under the initial condition of this
Segment. Let u, denote the expected value of the probability distribution
Fy, and (P (t)) — the transition probability matrix of the Markov process
with the transition rate matrix (6@%). Then 4, = A(t,), n e N, is an

embedded Markov chain with the transition probability matrix (Py),
where

Py =IZP$Q(“)ijdFi(“): i,jed.
o k

Denote by {s;} the limiting probabilities of the embedded Markov
chain 4,, n e N, if they exist and do not depend upon the initial state
of the chain. Then the limiting probability distribution of the process
A(t), t> 0, is of the form

G =D o [ PR A-Fuw)du/Y wo,, jed.

Suppose that A(t), t > 0, is the failure rate function of the element
and that Z is its working time. Taking into account (1), analogously to
Theorems 1 and 2, we have

TrEOREM 3. If the failure rate function of an element is a piecewise

Markoy process A(t), t >0, then the functions P,, i € J, satisfy the system
of equalities

Pi(2) = G4(a)(1—F(@) + [ O D PO w)ppPrl@—u)dF,(u), ied,
0o k j

where G;(z) = 3P (x) is defined in Corollary 3 under the assumption of
the transition rate matriz (0F).
THEOREM 4. If the limiting probability distribution {g;} of the process

A@), 1= 0, exists and does mot depend upon the initial state A(0) = A;,
4 = a;A, i—0, then

ll._ll’l'}P,-(m/l) = exp [ —2 a; qu] .

4. Systems with random load of elements. Assume that the working
time of an element depends upon its load. Experimentally, one can find the
distribution functions of the virtual working time of an element under
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constant load or, by a suitable extension of the experiment, one can find
the family of distributions of the working times of the clements under
load varying in some way. Consider a system of elements being under
random load. Now we analyze the distribution function of the working
time of elements of a system working in a random environment and of
a system in which the element loads depend upon the number of working
elements in the system.

4.1. Let A(t), t > 0, be the semi-Markov process which characterizes
the random environment defined in Section 1. Denote by A(?)
= {4;(A(®)): jed} the vector of failure rates, and by Z = {Z;: j e J}
the vector of working times of the elements of the system. The distribution
function of the vector Z can be expressed explicitly but at the same time
it is rather difficult to find a practically useful form of this formula. Note,
however, that it is a distribution function of by mixture positively de-
pendent random variables (see [10]).

- Indeed, if A(t, w), t > 0, is the realization of the process A(t), ¢ > 0,
for fixed w € 2, then the components of the vector Z = Z(w) = {Z;(w):
jed} are independent random variables with marginal distribution
functions

Pi(Z;, 0) = Pr(Z;(0) > 2) = exp|— [ 4:(4, o)d], ied, we,
; .
and
Pr(Z>2) = [[[Puz, 0)du(w),
Q i=1

where u is a probabilistic measure on Q.

4.2. Assume that the element loads of the system dc¢pend upon the
number of working elements. The working times of the elements of the
system can be described in the following way: At the initial moment the
virtual working times of the elements X;, j =1, 2, ..., m, where m is the
number of elements in the system, are independent random variables with
a common distribution function. At the moment X, ,, = min(X,,..., X,,)
one element is failed and the remaining ones are working under
different loads. The renewal of some elements (but not all of them) can be
assumed. Hence the residual virtual working times of the elements after
the moment X, , are transformed by T™. In symbols,

T™: X,—X,, —>XM, jed,

where X{ > 0, and there exists a j such that X" =0 if X;—X, . = 0.
At the moment of the failure of the second element 7 the residual virtual
working times are transformated by 7, and so on until the failure of
the last element in the system.
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Knowing the distributions of virtual working times of the elements
at the initial moment of work of the system and the transformations
9§ = 1,2,..., we can find the joint distribution function of working
times of the clements in the system, but this problem leads to rather
complicated caleulations. The estimation of the system reliability in the
case of incomplete information of the mentioned probability distribution
ay be of interest.

3. Systems with associated working times of elements. We say that
the working times X of the system elements arc associated random variables
(see [4]) if for any m-variable functions f and g, being monotvne for every
variable, the random variables f(X) and g(X) are non-negatively correla-
ted. It is known that associated random variables are positively dependent,
Le. for every division of the set J = {1,2, ..., m} on the subsets J,, J,, ...
--+» J, the following inequality is satisfied: '

Pr(X;>a;,jed)> [[Pr(X;> ;,jed,).
k=1

We prove now that in some class of systems with random loads of
clements the working times of the elements are associated random va-
riables, '

Tueorem 5. Let X = (X,, X,, ..., X,,) denote the vector of associated
random variables, let X, .y Xy oy oooy X denote the order statistics in this
Sequence, and let Y, ,, ked, n =1,2,..., denote independent random
variables, being independent also of X.

Consider the function T(z,y) which is monotone for x> 0 and y > 0,
hon-negative and such that the function x+T(a—x,y) is monotone for
Ze[0,a],a>0.

Then for every k € J the random variables T® (X) = {X{: jeJ} de-
fined by

(3) - Xt =Xim+Ixox T X~ Ximy Yia)y G €,

where I, is the indicator of A, are-associated.

Proof. Let us consider the vector # = (2, @, ..., #,,) and let R(x)
= (%} 10y @y pmy -y &y, m) De the order value vector for ®. For fixed i eJ
let ‘

&) = (Byy Bay oeey By_yy Bip1y -+ 9 )
and
R(z"Y) = (-’”g)m—n w‘f)m—-u sy w(i)—l,m—l)'

Let us fix 4, k € J and consider the order value z, , as the function

of #; which takes the form (see Fig. 1)
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i i
“”:)— Lm—1y L < w;:lx,m—.u
Tym = mk,m(wi) = 1%;, w(‘ll,m—l <& < wg,)m—la
i ¢
T 1 @ > T
Consider the functions
k -
m; ) = $k.m+Izj>zk’mT(a’j—wk,m7 ¥), Jed,

used in (5) and investigate their monotonicity with respect to every eompo-
nent of x. The inequality #; > =, ,,(«;) is satisfied iff z; > «{’,,_,, whence

i
T, m (%) 5 T < wf:,’m—u

o) = o (x;) = :
} ; ‘ T, m (%) + T (a’j — B m (24) ?I), r; > w}:,)m—l'

It is a monotone function of 2; for every j. Thus, using the characteri-
zation of associated random variables (see [4]), we have Theorem 5.

A 7
Xkm v
/
//
o o >
(0 i) x
Xk=1, m=1 "‘(k, m=1
Fig. 1

Now we consider examples of the functions T which may be used
in typical situations and failure mechanisms of elements for motivation
of their use.

Example 2. (a) The failure of an element causes for the working
elements to include in series additional failure mechanisms (see [7]):

T(z,y) = min(z, y).

(b) The failure of an element causes for the working elements to include
in parallel an additional reserve:

T(z,y) = max(z,y).
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(¢) The moment of the element failure is the regeneration moment
of the working elements:

T(z,y) =y.
. Example 3. Let T'(#, y) = ax, 0 < & < 1. This function has a simple
“}terpl‘eta.tion if a constant failure rate of elements is assumed. Let the
virtual failure rate function of an element be equal to P(x) = exp[ — Ax]
and let z, be the moment of failure of an element in the system. Assuming
xm - a(X —z,) as the virtual working time of the element after the
moment z,, we have
Pr(a(X —,) >z | X > 2,) = exp[—xi/a].

Hence the failure rate function of an element after the moment «,
is equal to 1/a, 0 < a < 1.

COROLLARY 4. Consider a system with the failure rate function of elements
depending upon the number of working elements in the system. Let m(t) denote
the number of elements failed and let Ay be the failure rate function of an
element. Assume that A< A <...<A,. Then the working times of the ele-
ments in the system are associated random variables.
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I. KOPOCINSKA i B. KOPOCINSKI (Wreclaw)

NIEZAWODNOSC SYSTEMOW O LOSOWYM OBCIAZENIU ELEMENTOW

STRESZCZENIE

W pracy rozwazamy niczawodnosdé elementéw o zmieniajgcej sie losowo inten.
sywnosei awarii oraz systemy zlozone z takich elementéw. Zakladamy, ze intensywnos¢
awarii elementu jest procesem poélmarkowskim, i przy tym zaloZeniu znajdujemy
funkecje niezawodnosci elementu i jej wlasnoéci graniczne. Rozwazajac systemy. ele-
mentéw o zmieniajacej sie losowo intensywnofci awarii elementéw, dowodzimy, zc
jezeli intensywnodé awarii elementow zalezy od losowego otoczenia, to czasy pracy
elementéw sa dodatnio zalezne przez mieszanie, natomiast jezeli intensywnosé awarii
elementéw zalezy od liczby sprawnych elementéw w systemie, to czasy pracy ele-
mentéw 83 stowarzyszonymi zmiennymi losowymi.



