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A MOST BIAS-ROBUST LINEAR ESTIMATE
OF THE SCALE PARAMETER OF THE EXPONENTIAL DISTRIBUTION

If the original statistical exponential model is violated in such a way
that the random variable under consideration is distributed with pdf
(1/ar@ +1/p))exp{ — (2/4)"} rather than (1/1)exp { —x/4}, then the sample
mean, being MVUE in the original model, is a bias estimate of 1. An
estimate which is uniformly most bias-robust in the class of all linear
estimates in such an extension of the model is constructed.

Introduction and results. Consider the statistical model
M, = (R}, %7, {Piy1s A > 0}),

where R} is the real half-line, 4 is the family of Borel subsets of E;,
and P, | is the exponential distribution with probability density function.
(Pdf) f,,(x) = (1/4)exp{—=»/A}. Consider the extension

]'Ipppz = (B By {Prps >0, P1<P < Do})

of the model M,, where 0 < p; <1< P,<2.16 and P, , is the exponential

Power distribution (a special case of the generalized gamma distribution)
with pdf

fip@) = (1/“1(1 +1/p))exp{_(m/1)p}.

The reason for introducing a rather strange-looking number 2.16
will become clear in the sequel. )

Some asymptotic problems of the robustness of confidence intervals
in the extension M, of M, have been considered by Pollock [1]. We
confine ourselves to considerations of the robustness with respect to the
bias of estimates of the scale parameter A.

Let X,, X,,..., X, be a sample from the underlying distribution.
It is well known that the sample mean X, = > X,/n is a minimum variance
unbiased estimate of A in the original model M,. If the “true” distri-
bution is P, ,, then the bias of X, is equal to E,,X,— A, where E, X,
is the expected value of X, under the distribution P, ,. Following a gen-
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eral concept presented in [2] we define the function

(1) bz, (A) = sup (B, X,—4)— inf (B, X,—1)
PI<P<Dy D1<P<Dy

which describes how much the bias of X, changes when, given A, the
‘parameter p runs over the interval [p,, p,]. Let T be another estimate of 4.
The estimate T' is more (bias-) robust than X, at 2 = 4,if by(2,) < bz, (4
and is uniformly more robust than X, if bp(4) < bz (4) for all 2> 0.

Given a sample size n and a real-valued vector a = (a,;, as, ..., @)
consider the estimate

n
T,(a) = ) ¢ X,
j=1
where X" (j =1,2,...,n) are order statistics. (Remind that the set
.of order statistics forms a minimal sufficient statistic in the model M, 0y
P < P,.) Of course, the sample mean X, is a special case of T,(a). W
prove the following

PROPOSITION. X{V/B, , X{™ is the uniformly most robust estimate of A
in every ewtension M, . (0 <p,<1<Pp,<216) of the model M,, in
the class of linear estimates T,(a), a > 0, which are unbiased in the orig-
tnal model M,.

Proof. The proof consists in constructing an appropriate 7', (a), a > 0.

The bias-robustness of T',(a) is described by the function

n n
bp @(A) = 4| su «E,  X™— inf oB,  X™
Tn(@) (P1<P£P2 ,;: i7he } PI<P<Dy g: AT )’

where ¢ = (a,, ay, ..., a,) is a vector such that T, (a) is an unbiased esti-
mate of 42 in M,, i.e.,

(2) DB, XM =1.

i=1

The problem of constructing the uniformly most bias-robust estimate
T,.(a) reduces to finding such an a which minimizes

n n

sup oE, , XM~ inf oE, , X
P1<p<1121=21‘ i p1<p<1’2_1=21' i7Lp ;

subject to (2) and to the condition

(3) =0, j=12,..,n.

Given (j,n), the expectation E, ,X{ is a decreasing function of
9 €(0,2.16). The upper bound 2.16 is important because I'(1+1/p) i8
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strictly monotone in p in this interval, and so is F, (@) for any fixe.d
> 0. A more exact upper bound for the interval of monotonicity 18
2.1662276.
Now, we consider the following linear programming problem:
minimize
n n
2 ajEl’pl'X;n)_ 2 afEl.sz}n)
j=1 j=1
under conditions (2) and (3).

All vertices of the polyhedron of o’s which satisfies (2) and (3) are
of the form

1
("1 =0,...,0.,=0, ¢, = B, X’ Oy =0,...,0, = 0),
1,1

j =1, 2,...,”.
We conclude that all but one coordinates of the optimal vector a

are equal to zero, and the index j, of the non-zero coordinate of the opti-
mal vector is that which minimizes

E X" _E, _x®
4 (n) T4 1,pg <5
(4) Vi (P1y Ps) E1’1X§n)

Using the formula

1
@ Prp T = (;b) JEG e a—iya,
0

x
where F, (z) = 6’. fi,p(w)du, we obtain

1

Fr (6)—F7L ()
(m) ( _ Loy 1,14 n)
V5 (P1) P2) 5[ 0] g™ () dt,

where

-1 j—1 n—
gy = O 0

of Fol (1 —t)~idt

It is easy to see that for an appropriate number t,;€(0,1) we have
9™ (1) > g, () for ¢ <1, ; and g™ () < g (t) for t > 1, ;. It follows that
if (Fr,, (0)—F 75, (#))/F11(t) Were an increasing function, we would have
#™ < 9{?,. We show that this is the case. To this end it suffices to prove
that Fy,(t)/Fi1(t) is an increasing function in ¢ for p < 1 and a decreasing
one for p > 1 or, letting ¢ = F, ,(#) and s,(0) = Fy}(F,,(®), to prove
that »/s,(#) increases with @ for p <1 and decreases for p > 1.
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Consider the derivative

ad & —2 ’
dw (sp(w)) = % @l @) o @)

Differentiating the identity

z 8p(®)
1 o g
- - = -u >
T+1jp) 6[6 du J e Ydu, =0,
we obtain
! [ — —mD —
8p (@) T(1+1/p) exp{s,(#) —a"}, 8,(0) =0,
and
8, (®) = __r fe {s,(u) —uP}du
P = Tasip J TP ‘
Hence

x

d ( @ )_ ofexP{sp(“)—u”}du—mexp{sp(w)_a,p}
o \s,(@)] T'(1+1/p)s2 (@)

The integrand in the last formula equals 1 for 4 = 0 and is a decreasing
(increasing) function for p < 1 (p > 1); this follows from the inequalities

(-] [- <}
pxP! f edu = fd(—e‘“p) =¢* forps1
x T

when applied to

d i ® (o p aa e
az SR @ =9 = TR 0T (¢ o f ¢ du).

As a consequence we obtain

d @
* >0 forpsi
dw(sp(w)) < P>

which proves the monotonicity of z/s,(x), and hence the monotonicity
of Fl(t)/Fi(t). It follows that T, = X{/E,, X is the most bias-
robust statistic in the class of all linear estimates T,(a), a > 0, which
are unbiased in the original model M,.

Some numerical results. The bias-robustness of the estimate 7, in
the model M, is described by the function

D1sDg
br, (1) = 2 (py, po).
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For the exponential distribution with pdf f,,(x) we have E,, x{
=1/n and by (4) and (5) we obtain

1
P (1, 92) = n* [ (P, () —FrL, () A —0)""dt.
[

Given (py, D), 0 <P <1< p,< 216, Fy} (1) —Fpp,(t) isan increas-
ing function so that y»{(p,, p,) is a decreasing function in n. The values

of 9" (p,, p,) for some small n and some supermodels M, ,, are given
in Table 1.

TABLE 1
Values of P and Pe P = 0.9 P, = 1 P = 0.9 P = 1
P =1 P =11 Pp=11 | Pp=2
b(pys D) 0.178 0.118 0.296 0.436
n=2 0.139 0.093 0.231 0.339
n=3 0.121 0.081 0.201 0.290
PP (p,py) | M =4 0.109 0.074 0.183 0.259
n=2>5 0.101 0.070 0.171 0.238
n = oo 0.052 0035 |  0.087 0.114

The bias-robustness function (1).of the sample mean takes the form

bin(l) =}bb(p1,p2), Whel'e b(p].’p'Z) = ,113/1’_1)_ _IE@.
rajpy T'Qps)
The values of b(p,, p,) are given in Table 1. Note that the robustness
of the sample mean does not depend on n.
For large n the random variable 2nF, H(X(M) is distributed as %

with 2 degrees of freedom so that E[F, »(X™)] ~ 1/n. Moreover, X is
small for n large enough so that ,

Fp (XM ~ XM 1141 /p).
It follows that T +1/p)

W (D1y Do) ~ I(1+1)p,) — (L +1/ps)

asymptotically. The asymptotic values of this coefficient are given in
the last row of Table 1.
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