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ON ESTIMATION OF PARAMETERS IN LINEAR MODELS

1. Introduction. In the paper we extend some known results on uni-
formly minimum variance unbiased linear estimation (shortly, UMVULE)
and uniformly minimum variance unbiased quadratic estimation (short-
ly, UMVUQE) in random models under the assumption of normality.

Suppose that y is a random normal n-vector with expectation Xf
m

and covariance matrix ) o} V,, where 8 = (,, ..., f,) and o = (o3, ..., 02,)
i=1
are unknown. It is assumed that for at least one ¢ the covariance matrix

of y is positive-definite. Let % be the collection of all parametric functions
of # which have a linear unbiased estimator a’y, and let # be the collection
of all parametric functions of ¢ and f which have a quadratic unbiased
estimator y’'Ay.

Theorem 1 gives necessary and sufficient conditions for each function
in ¢ to have a UMVULE. Theorem 2 gives necessary and sufficient con-
ditions for each function in # to have a UMVUQE. Moreover, Corollary 3
gives necessary and sufficient conditions for each function in ¢ to have
a UMVULE and for each function in 5 to have a UMVUQE. Theorem 2
extends a theorem of Seely [3] and Theorem 2 of the author [5].

The proofs of Theorems 1 and 2 are based on the fundamental lemma
on UMVUE of Lehmann and Scheffé. Corollary 3 is deduced from The-
orems 1 and 2 by applying Lemma 1 which gives a decomposition of the
space # of all (n X n)-symmetric matrices into three subspaces two of
which are quadratic subspaces of %.

2. Preliminaries. Let ¥ be a normal random vector such that y = X8+
-+e, where X is a given (n X p)-matrix, g is a p-vector of unknown para-
meters, e is a random vector with mean value 0 and covariance matrix

m
i=1
Here V, (¢ =1,...,m) are given (n X n)-symmetric matrices and

o =(0y,...,0,), while the ¢’s are unknown parameters. We assume
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that BeQ, = R? and that ceQ2, < R™, where £, contains a non-void
open set in R™. Moreover, we suppose that V(o) is positive-definite for
some cef2,, and that p and o are functionally independent so that the
whole parameter space is 2 = 2, X Q,. Let 6 = [f, o].

Throughout the paper, R*(-, -) denotes the k-dimensional Euclidean
space with the usual inner product, and #<-, -) the vector space of (n X n)-
symmetric matrices with the trace inner product. Finally, 4~ stands
for the generalized inverse of the matrix 4, and R(4) for the space gen-
erated by columns of A.

We recall the following terminology introduced by Seely [1] and
Seely and Zyskind [4]. Let g(6) be a parametric function, i.e. a function
from Q into R.

Definition 1. A parametric function g(0) is said to be «7-estimable
if the set

'Mg = {(a',?/): aeR", Eq(a, y) =g(0)}

is non-empty.
Definition 2. A parametric function ¢(0) is said to be %-estimable
if the set

By = {(B,yy'>: BeB,Ee<(B,yy’> = g(0)}
is non-empty.
In the remaining we denote (a, y) by @, and {B, yy'> by B.
Definition 3. An element Ge o/, is said to be «/-best for a para-
metric function g(0) if Varsa < Var,b for every 02 and every be .«7,.

Definition 4. An element Be%, is said to be %#-best for a parametric
function ¢(6) if Var, B < Var, C for every 6¢ 2 and every Ce%,.

3. of-best estimators. As it is well known, ¥ = {(, B): ie¢ R(X')}
is the collection of «7-estimable functions. In the sequel we state necessary
and sufficient conditions for every function in ¢ to have an «7-best esti-
mator. Moreover, the theorem gives an explicit form of an «/-best esti-
mator for every function in %.

THEOREM 1. Suppose that V, = V(o,) i8 positive-definite. Then for
every function ¢ = (4, ) in 9 the expression

(1) (2, (X' V5 X)" X'V y)
represents an <Z-best estimator if and only if
(2) VX X'V'X) X =X X' VX)X V'V, (i =1,...,m).

The estimator (1) does not depend on the choice of the generalized inverse
matriz.
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Proof. Let I be the (n x n)-unit matrix. There exists a matrix B such
that B'B = V! or, equivalently, BV B’ = I. Then the expectation and
covariance matrices of z = By are

E;2 = BXg and Varee = W(o) = Y a;W,,
=1

respectively, where W, = BV ,B’. Note that Varsz = I for ¢ = ¢,. Now
Corollary 5.2 in [1] states that for each parametric function in % there
exists an «&/-best estimator if and only if

(3) W, [R(BX)] <« R(BX) (1=1,...,m).
Since W, is a sy\mmetric operator, formula (3) is equivalent to
(4) PW,=W,P (i=1,...,m),
where P is the projection on R(BX), i.e.
P=BX(X'V,'X)"X'B'.

Multiplying (4) from the left by B~' and from the right by (B’)~*
we get (2).

Formula (1) and the uniqueness of the estimator given by (1) follow
from the fact that the minimum of the variance of (1) is attained at ¢ = o,
and from the assumption that V(o,) is positive-definite.

From Theorem 1 the following conclusions can be easily deduced:

COROLLARY 1. Suppose that V(o) = I for some oe£2,. Then for every
Junction in ¢ there exists an </-best estimator if and only if PV = V,P

(¢t =1, m), where P is the projection on R(X).
COROLLARY 2. Suppose that V(c) = I for some ce2, and that P =
= X(X'X)"X' commutes with each V (it =1, m). Then the </-best

estimator for (A, B)e% is (4, ﬂ ), where ﬂ is a solutwn of X'Xp =X'y.

4. B-best estimators. In this section we state necessary and suffi-
cient conditions for every #-estimable function to have a #-best estimator.

First we introduce some additional notation. Let U = 22’ and let
H = BX. Moreover, let Hy; = HBf'H'. Under the assumption of normal-
ity, the expectation and covariance operators of U are

By U = H;+W(o)
and
(5) Cove(<4, U),<{B, U)) = (%4, B) |

= 2(W(0)AW (o) +W(s)AH,+H,AW (o), B,

respectively.
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Remark 1. It may be worth-wkile to point out that the assumption
of normality of ¥ is used only to obtain the formula for the covariance
matrix of U. In other words, the stated results hold provided the covari-
ance matrices of U are of the form as above.

Defining & =sp{E,U: 02}, we note that

& = sp{H,, le coey Woy Bef2:).
Now, let Ay, ..., h, denote the columns of H, and let

H,=hh, (i=1,...,p) and H,-j=h-h'~—i—h,-h;- 1<i<ji<yp).

17y !
Then, by the lemma of Seely (see [2], Lemma 1), we have
(6) € =Sp{Hyy Hygy ooy Hypy Woy ooy Wi}

THEOREM 2. For each #-estimable function there exists a #-best esti-
mator if and only if & is a quadratic subspace of A.

Proof. Let 8, = [0, o,]. It follows from (5) that } X, is the identity
operator. Consequently, in view of a well-known result of Seely (see Corol-
lary 5.2 in [4]), for each %-estimable function there exists a %-best esti-
mator if and only if & is an invariant subspace of X, for all 0 £2.

Now assume that & is a quadratic subspace of #. Then by (5) we have

(7) Zy(A) = 2(W(0) AW (o) + W (o) AH;+ H AW ().

Since W (o), A and H, are elements of & and since & is a quadratic
subspace, it follows from Lemma 4 in [5] that 2;(4)e & for all e 2.

Now, let & be an invariant subspace of 2 for all ¢ Q2. Putting § = 0
into (7) we obtain

(8) W(e)AW(o)e& for cef,, Acé,
and
(9) W(o)AH;+H;AW(o)eé&  for cgefy, Bef2,, Ac&.

On the other hand, substituting I in place of 4 into (8) and in place
of W (o) into (9) we have

(10) W(o)W(c)e& for cef,
and
(11) AHz+HgAe& for fef,, Aecé.

Since, by assumption, £, contains a non-empty open set in R?, by (10)
we have W,W,+W,W.,e& for ¢,j =1,...,m. Now, in view of (11)
and Lemma 1 of Seely in [3], we can conclude that & is a quadratic sub-
space of #. This completes the proof of Theorem 2.
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Remark 2. In the case X = 0 Theorem 2 has been proved pre-
viously by Seely [4], and in the case X = (1,...,1)" by the author [5].

COROLLARY 3. Suppose that y~.N(Xﬂ, V(a)) and OeQ. Then for
each <Z/-estimable function there exists an </-best estimator and for cach
RB-estimable function there exists a RB-best estimator if and only if

ViP(l:P(’)Vi (i=17'-"m)1
and

V. VMV, 4+ V; VMoV, e sp{ViMy, ..., V., My} (3,5 =1,...,m),

where Py = X (X' V' X))~ X'V, while M, = I—P,.
In order to prove Corollary 3 we need Lemma 1.

Let
B, ={PAP: AeB}, B, ={MAM: AR},
By = {PAM+MAP: A%},

where P = H(H'H)"H’, while M =I1—P.

LemMA 1. The subspaces B,, B,, Bs of the space B have the foliowing
properties:

(a) B, and B, are quadratic subspaces of #;

(b) AB =BA =0 if Ae®, and BeR,;

(¢) (B;; B;) =0 if B;e®#, and B;e®; for i =1,2,3, and i #j;

(d) & is a dirvect sum of B,, By, B3, 1.6. B = B, DB, D%B;.

The verification of Lemma 1 is straightforward, and is omitted.

Proof of Corollary 3. First note that any subspace £ of the space #
can be decomposed into subspaces 2,, Z,, Y5 such that

D D,®D,09,, whete 9, < By, D, < By, Dy < By.

In particular, let &,, &,, &5 and # ', #,, # ;3 be such decomposi-
tions of & and # = sp{W,, ..., W,,}, respectively. Using the fact that
#, = sp{Hy,, ..., H,,} and using (d) we can represent & in the form of
Ec B, DOW,DW,.Note thatif PW = WP for each We #,then#; = {0}
and & = #,®W#,. Now, in view of assertion (b) of Lemma 1, the
relations Ae#, and We# , imply that AW = WA = 0. However, this
shows that if one of the subspaces of & or #, is quadratic, then so are
both of them. In view of Theorems 1 and 2, this completes the proof of
Corollary 3.
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R.ZMYSLONY (Wreclaw)

ESTYMACJA PARAMETROW W MODELACH LINIOWYCH

STRESZCZENIE

Zakladamy, ze y jest wektorem losowym o rozkladzie normalnym o wartodei
m
oczekiwanej Xf i macierzy kowariancji }' o; V;. Wielkoéciami nie znanymi sg
i=1
B =By > Bp)e2y =RP oraz o = (6y,...,0p)cQy; < B™,
L]
Zakladamy, ze dla co najmniej jednego o€, macierz kowariancji wektora y
jest nieosobliwa. Niech ¥ bedzie klasa wszystkich funkeji parametrycznych B, ktére
83 liniowo estymowalne, 5# za§ klasa wszystkich funkeji parametrycznych o i g, ktére
83 kwadratowo estymowalne. Twierdzenie 1 podaje warunki konieczne i dostateczne
na to, aby dla kazdej funkecji w klasie ¥ istnial jednostajnie najlepszy nieobeiazony
estymator liniowy. Twierdzenie 2 podaje warunki konieczne i dostateczne na to,
aby dla kazdej funkeji w klasie o istnial jednostajnie najlepszy nieobcigzony esty-
mator kwadratowy. Ponadto wniosek 3 podaje warunki konieczne i dostateczne na to,
aby dla kazdej funkeji w klasie ¥ istnial jednostajnie najlepszy nieobcigzony esty-
mator liniowy oraz aby dla kazdej funkeji w klasie 5 istniat jednostajnie najlepszy
nieobciagzony estymator kwadratowy.



