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AND CHEBYSHEV APPROXIMATION BY THEIR ELEMENTS

_ 1. Introduction. Let C[a, b] be a space of real-valued functions de-
fined and continuous on the closed interval [a, b] normed by

Ifll = max {|f(z)|: =€ [a,b]},
and let M be an n-dimensional subspace of C[a, b].
Definition 1. M is said to be a Haar subspace on [a, b] if each non-
Wrivial function from M has no more than #—1 zeroes in [a, b].
. Definition 2. M is said to be a weak Chebyshev subspace on [a, b]
If each function from M changes its sign in [a, b] at most n—1 times.
If [¢,d] = [@,b] and feC[a,b], then we denote by f|[e¢, d] the
ction f restricted to [c, d]. Let @;, 6 = 0, <2, < ... < @, = b (8= 0)
fixed knots and let P; (¢ =0,1,...,8) be n-dimensional Haar sub-
SPaces on intervals [@;, #;,,]. Let us write

(1) Plzy, ..., 3,] = {p € C[a, b]: Pz, @,]1eP;, ¢ =0,1,...,s}.

In the sequel, for the convenience of notation, we denote P[x,, ..., x,]
Shortly by P. Obviously, P is a non-empty linear subspace of O[a, b].
Section 2 we shall establish some important properties of the subspace P.
Pplications of these properties to the linear Chebyshev approximation
Y elements of P will be discussed in Section 3. In Section 4, a generali-
Zation of the non-linear Chebyshev approximation from [3] will be given.

2. Some properties of the subspace P. The following theorem gener-
€8 Theorem 4 from [1] (see also Remark 1, ibidem, p. 36).

THEOREM 1. P is a weak Chebyshev subspace on [a, b] of dimension

8
Stn—s.

- Proof. First, consider the case s = 1. For each functionp e P = P[x,]
a,: dhave P = qxr, where the operation * indicates that p|[a, x,] = q € P,
Pllz,b] =re P,. Let p, be an arbitrary fixed positive function in P

aliz
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and let p; (¢ =1, ..., n,) be a basis for P,and let p; (1 = %y ..., ny+n0,—1),
where p, = P, be a basis for P,. Such a function p, exists, since in every
Haar subspace there exists a positive function. Now, if u; are non-zero
real numbers such that p;(#,) = y;p.(®,) for ¢ =1,...,n,+n,—1, then
we may prove — analogously as in [1] — that the functions p*u;P:
for 4 =1,...,n, and p;p*p for ¢ =n,+1,...,m+n,—1 are linearly
independent.

Since for an arbitrary function p = g*r € P and a constant u such
that p(z,) = pp,(»,) we have

P = (q*pp,) +(up*7) — (uP1* 4 D1),

P is an (n,+n, —1)-dimensional subspace. Hence we can prove by induc-
tion, as in [1], that P has dimension

8

Sns

=0

and that P is a weak Chebyshev subspace.

Remark. Bartelt noted in [1] that neither Theorems 1 and 2 nor
Theorem 3 are valid without the assumption 1 € M. But this is not true.
The subspace spanned by the system of functions {», #?, ..., "}, where
wela,b] and O ¢[a,b], is a simple counterexample. It is known that
each Haar subspace contains a positive function. Conversely, the assump-
tion 1 € M in Theorems 1, 2 and 3 from [1] may be replaced by the weaker
assumption that M contains a positive function. We omit the proofs
of these generalized theorems, since they are essentially the same as in [1]-

Moreover, Bartelt has proved that in C[a,b] there exist no weak
Chebyshev subspaces, practically applicable, other than those defined
by (1).

The following lemma in a sense characterizing Haar subspaces will
be useful in the sequel.

LevmA 1. Let H be an n-dimensional Haar subspace on [a,b] and
let an arbitrary number A # 0 and knots x; (¢ =1,...,n—2), a <@, < --*
cer < B,y < b, be given. Then there exist a number &, ,

0<e < min (w,,—2)/2, where ©y=a, v,_, =D,
1=0,...,n—2
and a& function he i such that h(a) = A, b changes its sign ewactly at
n—2 points y;€(w;—e,v;+¢), where 0 < e<e and h(w) #0 for all
zela, bIN{Y1) .+v) Yns}-

Proof. It is known that there exists a function g € H such that

g(a) =2, g(b) =0, and g changes its sign exactly at n —2 points %
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(i=1,...,n—2). Additionally, g(») # 0 for all % € [a, b]\ {m,, ..., B,_,, b}.
Let p be an arbitrary fixed positive function in H and let

o = sgnfg(x): @ e (2,2, b)],

where
1, fl@)>0,
sguf(x) = 0, f(»)=0,
-1, f(#)<0O.
Write

h.(®) = g(®)+pop(®), p>0.

We have h,(x) > 0 for all x> 0 and @ € [z,_,, b]. Let a positive real
umber &, be so small that the function g(») is strictly monotone in every
Interval (v;—e,2;+¢) for 0 <e<e and ¢ =1,...,n—2. Since g is
Continuous and H is an n-dimensional Haar subspace, then there exists
& uy = u,(¢) > 0 such that the function h,(x), 0 < u < u,, changes its
S1gn exactly at # —2 points y; € (;—¢, #;+¢) for ¢ =1,...,n—2. A func-
tion h defined by

h(@) = Ah,(@)] (A+pop(a))
hag the same properties and, additionally, h(a) = A. Hence the proof

of the lemma is complete.

Definition 3. A function f € C[a, b] is said to alternate n —1 times on
4 subset D of [a, b] if there are n points @, < #, < ... < #, in D such that

Fla) = — f(®;,) for ¢ =1,...,n—1. The points @; are called alternation
Dointg,

We denote by u(f, D) the maximal number of alternation points
of the function f in D. Obviously, it is possible that u(f, D) = oo, since

geinnfr, O0<2<2,
fl@) = {0, & =0,
“ad D = {2,2/3,2/5,2/7,...}. It D =@, then we set u(f, D) = 0.
% TaEOREM 2. Let f € C[a, b] and let D be a closed subset in [a, b] such
T}?t If(#)] > 0 for all @ e D. Let D; = [w;, ;10D for ¢ =0,1,...,s.
€% there exists & fumction g € P = P[x,, ..., %,] such that f(x)g(w)> 0
allzecp if and only if the following conditions are satisfied:

2) ulf, Dy<m;, i=0,1,...8;
8) p(fy Djy0Dy) < my_y+my—1
Jor each j such that 1 <j<s and D;_,, D; #O;

“ 4(fy DyuD) < 1,1
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for every u,v such that 0<w<v—1<s—1, D, D, #9, D, =9, and
n,=1for i =u+1,...,0—1.

Proof. Necessity. If there exists a set D; containing at least n;+1
alternation points, then the proof of the necessity is obvious, since P; is an
n,-dimensional Haar subspace. Now, assume that

p(fy Dj_yoDy) > m;_,+n;—1  for some 1< j<3s.
Then by elementary considerations we may prove that the inequality
f@)g(x)>0 for weD;_,uD; and g|[®;_, ®;,,] € Cl2;_y, ®s4,]

holds if the function g has either m;_, zeroes in [#;_,, #;] or n; zeroes in
[«;, #;,,]. Hence we obtain a contradiction.

If condition (4) is mot satisfied for some w,v, then from =, =1
(¢ =w+1,...,v—1) it follows that the inequality

fx)g(®)>0 for weD,v... uD, and g|[®,, By, ,] € C[2,, Bpy,]

holds if the function g has either n, zeroes in [@,, @, , ,] O 1, ZeT0es in [Ty, Tp41)-
This gives a contradiction. The proof of the necessity is now completed.

Sufficiency. Let @y, ;< 2y <... <@y, <&y, be alternation
points of the function fin D, for ¢ =0,1,...,s.

Case 1. First consider the case where the following conditions are
satisfied :

(a) 1<k<n fort=0,1,...,8;

(b) sgnf(wy,) = sgnf(#;y,,) for ¢ =0,1,...,8—1;

(c) conditions (2) and (3) hold.

For . =1,...,k we put

a; =inf{x: we (@ %—1y T ]OD and sgnf(w) = sgnf(@)},
by, = sup{®: & € [@y, ¥; 4, ]nD and sgnf(x) = sgnf(x,)}.

From the continuity of the function f on [a, b] it follows that b;;, < @;,x+1
for k =1, ..., k;—1, since the set D is closed. If &, = 1, we choose a func-
tion A, in P, such that hy(a) = f(x,). This function exists, since a positive
function exists in P,. If 2 < k, < 7o, We choose a function h, in P, such thab
ho(a) = f(x,), by changes its sign at r points 2,,, where 2y, € (bo, ao,k+1)
for k =1,...,k—1, 2y € (bo1, G) for k& = ko, ky+1,...,7, and

_ {fno—l if ny—k, is even,
" |my—2 otherwise.

In the case r = n,—1 the existence of A, follows directly from the
fact that P, is a Haar subspace, and in the case r = ny— 2 from Lemma -~
We have f(x)hy(x) > 0 for all # € D,and the function %, defined above:
By using (a) and (b) we may choose, in the analogous way as hy, & functiol
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k,eP, such that hy(@,) = hy(x,) and f(@)h,(®)>0 for all weD,.
Consequently, we may prove by induction that there exist functions h; € P,
(i =2,...,8) defined and continuous on intervals [w;,#;,,] and such
that h, (@) = h;_,(x;) and f(x)k(x)> 0 for all weD,. Let us define
& function & by

hi[@; @3] =hy ¢ =0,1,...,8.

Clearly, h € P and f(x)h(x) > 0 for all # € D.

Case 2 (general). Now, it is sufficient to prove that there exist
3 function F defined and continuous on [a,bd] and a closed set B,
D < B < [a,b], such that F(s) =f(x) for all #eD, |F(z)|>0 for
all # € B and that for alternation points of F in B conditions (a), (b) and (c)
from Case 1 are satisfied.

We may assume without loss of generality that

(5) sgnf(@;_1,x,_,) = sguf(@,)
and
(6) sgnf(w,,z,) = sgnf(2,)

for arbitrary j, u, and v as in (3) and (4).
In fact, if (B) is not true, e.g.

8gnf(@_1x,_,) = —sgnf(@,),

t.hen it follows from (2) and (3) that either k; < m; or k;,, < m;,,. In the
first cage let us denote by F a function defined and continuous on [a, b]
Such that F(x) = f(x) for all weD, and F(2) = —sgnf(w,), where
® & (@_y1,_,, #;) s arbitrarily fixed. In the second case we choose z & (a;, @;,)
and F(z) = — 8g0f(®;_14,_,)- Bince the set B = {z}uD is closed and f
8 continuous on this set, such a function F' exists by the well-known
Tietze theorem. The point z is a new alternation point of F in the set
D;_,uD, 0 (2.

We may consider (6) in the same way as (5). For the convenience of
IlOtation, we denote the obtained function F and the set B by f and D,
:ezpzetively. Obviously, (2)-(6) are satisfied for the function f and the

e

Now, for all  and v a8 in (4) we define a continuous function F
0 [a,b] by F(z) =f(z) for all 2D and F(z) = sgnf(z,), Where
%€ (@, ;) for ¢ =u+1,...,0—1. Also, set B = DU {2y11,...)2Zp_1}-

t the obtained function F and the closed set B also be denoted

Y f and D, respectively. Conditions (2)-(6) are satisfied for the function f

:nd the set D. Additionally, we have D,#@ for i =u+1,...,0—1

nd.a.ll % and v as in (4). Obviously, the last construction is valid if n; > 1

O‘f ‘=wu+1,...,v—1in (4) and with trivial modifications also if v = —1
"Y' =384+1 in (4).
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For the completeness of the proof we must consider the case where (2)
holds for  and o,

/“(f’ -Du U-Dv) = Ny + Ny and sgnf(mu,ku) = - sgnf(a"vl) ’

where 0 <u<v—1<s8—1,D, D,#@, D;,=0 for i =u+1,...,0—1,
and there exists ¢, ¥ < t < v, such that n, > 1. In this case, while defining
on [a, b] a continuous function F such that F(») = f(x) for x € D, F(21)
= sgnf(#,,;,) and F(2,) = sgnf(®,,), where 2;, 2; € (@, #,,), and a closed
set B equal to {z,, 2,} UD, we obtain the case where (4) and (6) are satisfied,
which we considered above. Let us again denote the obtained function F
and the closed set B by f and D, respectively. Since (a), (b) and (c) aré
satisfied for these f and D, we may use the method from Case 1. Thus
the proof of Theorem 2 is completed.

The following two examples illustrate the role of conditions (3) and (4)
in Theorem 2.

Example 1. Let the subspace P[9/24, 11/24], where P, = Ps
= span {1, #} and P, — span{l}, be defined on the interval [9/40, 2],
et f(#) = cosn/x, and D = {1/4,1/3,1/2, 1}. In this case, condition (4)
1s not satisfied and Theorem 2 is not true.

Example 2. Let the subspace P[5/12], where P, = P, = span{l, &},
be defined on the interval [9/40, 2] and let f and D be defined as in Exam-
ple 1. In this case, condition (3) is not satisfied and Theorem 2 is not true-

3. Linear Chebyshev approximation by elements of P. Let the func-
tion f € O[a, b] and the subspace P = P[x,, ..., #,] defined by (1) be given
A function g € P is the best Chebyshev approximation for f if

If—gl<I|f—hll for all heP.

From the general theory of linear approximation (see, e.g., [2] or [5])
it follows that the best approximation ¢ e P[,,...,#,] exists for al
functions f € C[a, b] and that the following theorem holds:

THEOREM 3. An element g € P is the best approximation for f € Cla, bINE
if and only if on the set D = {x: |e(x)| = |le|} there exists no fumction h €
of the same sign as the error function ¢ = f—g.

Obviously, this approximation is not unique for every functiol
feCla, b].

Definition 4. An alternans of the function f on the closed subset D
of [a, b] has Property A if at least one of the following three conditions 18
satisfied :

(i) there exists ¢ such that 0 < ¢ < s and u(f, D;) > n,;
(ii) there exists j such that 1<j<s and u(f, Dj_yuD;) > m-17T
+n;—1;
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(iii) there exist 4 and v such that 0 <u <v—-1<s8-1, D,, D, # 0,
D, =@ andn; =1fori =u+1,...,9—1,and u(f, D,uD,) > n,+n,—1.

From Theorems 2 and 3 we obtain directly

ALTERNATION THEOREM. An element g € P is the best approvimation
in P for feCla,b]\P if and only if the error function ¢ = f—g has the
alternans with Property A on the subset D = {»: |e(»)| = |||} of [a, b].

COROLLARY. If the error function ¢ = f—g has at least

i'n,-—s—l-l
=0

alternation points in the subset D = {w: |e(x)] = llel} of [a,bd], then the
Function g is the best approwimation in P for f.

4. Non-linear approximation by elements of P. Let H be an n-dimen-

Sional Haar subspace on [a, b] and let [¢, d] = [a, b]. We put
E,(f, ¢; d) = max|f(#) —g(»)| = inf max|f(»)—h(z)|.
zele,d) heH zelc,d)

Moreover, let f®H denote a subspace spanned by the function f
and the subspace H.

LeMMA 2. If fOH, where f € Cla,b]\H, is an (n+1)-dimensional
Haar subspace, then

(i) The set D = {x: |r(»)] = |Irl}n[c, @] contains exactly n alterna-
tion points of the error function r = f—g and ¢, d € D.

(i) B, (f;c, d) is a non-negative continuous function of variables ¢ and d,
Which is a sirictly increasing function of d for a fized ¢ and a siricily
decreasing function of ¢ for a fized 4.

Proof. For the continuity of E,(f; ¢, d) see [4] or [6]. From the Alter-
Dation Theorem it follows that D contains k points, k > n. If k > n, then
the function r—Ap, where p(x) > 0 for » €[a, b] and A is a sufficiently
Small number, has at least -1 zeroes. Thus we obtain a contradiction.
We may complete the proof of parts (i) and (ii) by similar arguments.

In this section we assume that the subspaces P; in the definition
of p [#1, ..., 2,] in (1) are n,-dimensional Haar subspaces on the interval
[2, ). Now, consider the following non-linear Chebyshev problem:

For an arbitrary fixed function feCla,b]\P determine knots z;,
ISz<... g 2, < b, and a function g € P[2,, ..., 2] such that
@) If—gl= min  min [f—hl.
a<z)<...<Tg<bh hePlz),..., %)
We set F,(f; a,b) = IIf —gl.
_ Gavrilovié [3] has solved problem (7) with the assumption that P;
~ 8pan{l, #} and that a subspace spanned by functions 1,z and f(z)
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is a Haar subspace on [a, b]. Here we solve this problem only under
the assumption that fOP; for i =0,1,...,8 are (n;+1)-dimensional
Haar subspaces on [a, b]. This generalizes the fact that f is a strictly con-
vex or strictly concave function on [a, b] in the sense of definitions from [6].

THEOREM 4. If f®P; for ©+ =0,1,...,8 are (n;+1)-dimensional
Haar subspaces on [a,b], then there ewist a unique sequence of knots z;,
a<2,<..<2<b, and a unique function g € P[2,,...,2,] such that (7)
holds. For this function we have

If—all =Eni(f;zi’zi+1)’ t1=0,1,...,s,

where 2, = a and 2,,, = b.

Proof. If 8 = 1, then the theorem follows from Lemma 2. For 8 > 1,
the proof is analogous as in [3].

The set D = {x: |e(x)] = |le]]}, where ¢ =f—g and g is defined
by (7), contains exactly

8
2 n;—8+1
i=0
points, and ;e D for¢ =0, 1, ..., 8+ 1. Additionally, the error function ¢
alternates at these points. We note that a method analogous to that
from [3] may be applicable to determine the knots 2; and the function ¢
in (7).

Example 3. Let f(#) =1/(x—¢c), where z€[a,d] and c ¢ [a, b].
Moreover, let P; =span{l,s} for ¢ =0,1,...,8 and ¢ =sgn(c—a).
The knots 2; for ¢ =1,..., s and F,(1/(»—c); a, b) are determined [3] by
the following non-linear system of equations:

1
le—2| 2 —Je—z;_y| 71 = O'I/st( ;“,b), t=1,...,84+1.

r—C

Solving this system of equations we obtain

e 'ab_l(v—u)z . ( s+1 )2
No—e ) T2 \sx1)’ T TNt —itiw )’

1 =1,...,8,

where % = |c—a|™'? and v = |e—b|7'~.
The polygonal line g in (7) is uniquely determined by the vertex
(25 ¥;), where

1
Y = +0F3(

sa, b t =0,1,... 1.
w_o’ay )’ v gLy, 84

Z—ec
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zd(-”finiowa,ne przez wzér (1), oraz jednostajng, liniows i nieliniowa aproksymacje

O SLABYCH PODPRZESTRZENIACH CZEBYSZEWA
ORAZ JEDNOSTAJNEJ APROKSYMACJI PRZEZ ICH ELEMENTY

STRESZCZENIE

W pracy oméwiliémy stabe podprzestrzenie Czebyszewa P = P[x,, ..., %],

prz.ez ich elementy. Tego typu podprzestrzenie badal Bartelt [1]. W rozdziale 2 zau-
8 82yliémy, ze wszystkie twierdzenia z pracy [1] pozostaja stuszne dla nieco ogélniej-
Zycl.l zalozei. W szczegélnosdei, twierdzenie 1 z tej pracy jest uogélnieniem twier-
. “®ia 4 7z [1]. W twierdzeniu 2 ujeliémy pewns wiasno$é podprzestrzeni P, grajaca
totng role w teorii liniowej jednostajnej aproksymacji funkeji ciagtych przez elementy

=

'_*‘fPI‘Oksyma.cja. ta zostala oméwiona w rozdziale 3. W rozdziale 4 uogélniliémy
Diki pracy [3], dotyczace nieliniowe]j aproksymacji funkeji ciagltych przez elementy P,

8konstruowaliémy najlepsza aproksymacje przez lamane dla funkeji f(x)

/(@ —¢).



