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1. Introduction. The purpose of this paper is to present numerical
methods for the solution of singular integral equations of the following
two types:

t
_ J(s) .
(1.1) gt) = (D) —h(s) ds, tefo0,R],
and
(1.2) g(?) f s h(t - ds, te[0,R],

where f is an unknown function, 0 < a < 1, and & is a strictly increasing
and continuously differentiable function in [0, R]. Since

f(S f(s)
| G —rwr ® = | oo =sw) —prw—roF

we may assume without loss of generality that h(0) = 0.
It is well known (see, e.g., [10]) that for equations (1.1) and (1.2)
the following inversion formulae hold:

sma'r: d
L3)  fle) = — f I, 5[0, R
and
d B (t
(14)  f(s) = — Sm:” f T s)]1 _dt, se[0,R].

The numerical methods of solving equations (1.1) and (1.2) presented
in this paper are based on inversion formulae (1.3) and (1.4) and gener-
alize the high accuracy numerical methods described for the special selec-
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tion h(t) =1t?, p =1/i, and ¢ =1/2, 1,2, ..., of the function % as given
in our previous papers [b], [8], [9]. Note that the solutions of these equa-
tions are often necessary in the theory of mixed boundary value problems
[10] as well as in other physical and mathematical problems (see, e.g.,
[2], [4], [6]). In particular, the numerical methods given in this paper
can be used to solving the important equations (see [10]) of types (1.1)
and (1.2) with 2 equal to 1 —cos(?f) and R = .

Now, let the function S(z) be defined on the interval [0, a]. Then
we denote by 8,, where 4 = {®y,%3,...,2,} and 0 =, < 2,< ...
...< x, = a, & spline function of degree m = 2r—1 (1 <r<n) which
either interpolates S(x) at nodes x; with arbitrary boundary conditions
or approximates smoothly the values S (;) of S (z;) in the sense of Reinsch
[7]. Moreover, we require that the spline function S, is given in the
form

m n-1
(1.5) 8,(@) = D) ayat+ ) B,0(w, 7;) (v —a))",
i=0 ji=1
where
0 ifz<ea
0(z, mj) = 7

1 if 2> a.

A numerically stable method for determining o; and g; in (1.5) is
given in [b] and [9].

2. Numerical solution of equation (1.1). In this section we assume
that the function ¢ is continuously differentiable on the interval [0, E]
and that m > 1, i.e. spline functions are of degree greater than or equal
to 3. Interchanging the order of differentiation and integration in (1.3)
we obtain

@D = h(S)Smm( = ol T dt)

T (8) —h(

for all s € (0, R].

Now, let a network 4 of the interval [0, R] be such that 0 =1,
<t,<...<t,= R.Since k(0)= 0 and the function & is strictly increasing
on [0, R], the induced network 4,, ¥ = h(t), of the interval [0, h(R)]
satisfies 0 = k() < h(ly) < ...< h(t,) = h(R).

Let us denote by (goh™') 4, (%), ® € [0, h(R)], a spline function inter-
polating or smoothing the function gok™! at the nodes h(¢;), 2 =1, 2, ...
..., n. We assume that the spline function (goh™?) 4, 18 given in the form
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{(1.5), i.e. that coefficients a; and g; are known. By (2.1) we define the
approximate solution f, of equation (1.1) in the form

h'(s)si (¢
(2'2) fA(s) = (8)sman (hl—a 8) +f [h gA ))]l—a dt)’

T —h(t

where

@3) g.) = Zah’(t+Zﬂ,0[h ), Bt 1[R(E) — B (8™,

i= j=1

and a; and §; are coefficients of the spline function (gonh‘ )a,+ Differen-
tiating the function g, given by (2.3) and substituting g to (2 2) we get

k' (s)sinan
@4 ful0) = (hlas)+2aa(s+2&bj<s))

j=1

where
B () B~ (t)

h(s) —h@p— @ P =B A

8
a;(s) =1
0

a, j=1,2,...,n.

[ 6[R(D), h(t)1[R() —h(t) TR (1)
bi(s) = m f [h(s)—h(5)]—°

0

Now, we derive formulae for a;(s) and b;(s) which do not require
a numerical integration. This process is possible because the presence
of h'(t) in the formulas for a;(s) and b;(s) justifies a change of variables.
For this purpose we need the formula

9.5 ot ds = — [h(s)—m]aiz—l s —1)gi—r-1p°
(2.5) fm; I é,(t —1)@ (8),

v=0
where
1, v =0,
(2.6) e,(3) = L i—odl
v 8,‘,_1(’&) m, v =1,2, oo

Formula (2.5) can be easily deduced from (2.8) and (2.9) given in [9].
Substituting # = h(t) in the formula for a,;(s) and using (2.5) we get
3 S ) .
(2.7) ai(s) =0 1 = 1,2,...,’”?/.
[ (a+9)

v=0
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Analogously, from the formula for b;(s) and (2.5) we obtain
(2.8)

by(s) = mIh(s) —h(;)I" OLh(s), h(1)] Y) (

m—1
%

)[_h(tj)]m_i_lci (tjy 8)
for j =1,2,...,n, where the functions ¢;(u, s) are defined by

1

1 ,
(2.9) il ) = —— D 668 w) % (s).

For computer evaluations of the functions a;(s) and ¢;(u, s), which
are essential in the numerical method presented above, we propose the
following formulae:

h’(s
a,(s) = p ) )
1+1
a;,,(8) = ati a;(s)h(s), +=1,2,...,m—1,

and

1
oo(u, 9) = =,

1 ] . .
c;(u,8) = —a—ﬁ[h’(u).—}—zh(s)c,-_l(u, 8)], +1=12,...,m—1.

These formulae for a;(s) and ¢;(#, s) can be proved inductively by
using (2.6), (2.7), and (2.9).

Let us define the norm in the space of all continuous funetions de-
termined on the interval [0, a] by

IfIl = max{|f(x)]: = [0, al}.

We can now establish a uniform convergence of the approximate
solution to the exact solution of equation (1.1).

THEOREM 1. Let g and h be continuously differentiable functions defined
on [0, R] and let h be a strictly increasing function on [0, R] such that
h(0) = 0. Then for every s € [0, R] we have
h?(s)h'(s)sinaw

aT

If(8) —fa(8)l < e{(goh™), 4,),

where [ is the solution of equation (1.1), a € (0, 1), f,(8) is given by (2.4)
and (2.6)-(2.9), and

e((goh™), 4,) = llgoh™) —(goh™) I.
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Proof. By (2.1) and (2.2) we get

h’ ( sinaw

1f(8) —Fa(8)l =

gA( )
f [h(s ——h(t)]l"’ dtl'

Consequently, from (2.3) and (2.5) it follows that

) T
16— fale) < 2NN, AeJsin f i w]l_a]
_ k(s)h'(s)sinaw 1w
- ZOEORE gony, 4)

This completes the proof.

The significance of Theorem 1 lies in the fact that we can replace
the investigation of the uniform convergence f, to f, under the assumption
that

4] = max{t;—t,_,: 1 =2,3,...,n}—>0,
by the investigation of the uniform convergence of the derivative of the
spline function (goh™), to the derivative of the function gor~! as

|4, = max{h(t;)—h(t_,): ¢ =2,3,...,n}>0.

- Recently, many theorems in the theory of spline functions on this
last subject have been formulated. In particular, if g, » € C¥)[0, R] and
(goh™1) 4, is an interpolating spline function satisfying the boundary

conditions
(goh )9 (a) = (goh™)(a),
where @ = 0 and a = h(R) and ¢ =1 or ¢ = 2, then from [3] it follows

that we can put
14,

e((goh™), 4o = =7 lgoh™)¥

in Theorem 1.
Examples. Now we use the method presented above to the nu-
merical solution of the integral equations

f(s)
oy ds, te[0,1],
and

G f(s) 2
cos (t)—ofl/cos(s)-——cos(t) s, 1e[0,=x].
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By virtue of (2.1) the exact solutions of these equations are equal to

(2.10) f(s) = -18£ &
and
(2.11)

__ sin(s)¥V1—cos(s) >\ (5 (1 —ecos(s))t~*cos?~* (s)(11 cos (s) —24)
&) = - ;,(z) 10 —2i+1 ’
respectively.

In Table 1 we list the absolute errors |f(s;) —f4(s;)| for the first
example.

TABLE 1
Absolute errors

° n = 5l n = 101 n = 201
0.2 1.130—"7 9.2,,—9 1.2,0—9
0.4 3-910 - 8 3-410 b 9 2-310— 10
0.6 1-710'—8 1-510—'9 1.310—'10
0-8 9-610—' 9 7.710— 9 4-110""'10

1 6.410— 9 1.310— 9 4-11°—IO

In this example, s =s;, =4¢/6 (¢ =1, 2,...,5), each f(s;) has been
calculated from (2.10), and each f,(s;) from (2.4) and (2.6)-(2.9). Using
the method proposed in [b] and [9] we have calculated the coefficients
a; and B; of the function g, under the assumption that

1—1 )
t;, = Pt 1 =1,2,...,my m =3,

8(0) =48(0) =0, £81)=1, &Q)= %,

where 8(z) = (goh™'), (2), g(¢) = &, and h(f) = &

We note that goh™' € C®[0,1] in this example. Therefore, using
Theorem 1 from this paper and Theorem 2.3.3 from [1], p. 31, we can
derive the following estimations of absolute errors |f(s) —f4(s)| (s € [0, 1],

n =51, n =101, » = 201):

|f(s) —fa(s)l < Os?,
where C = 0.02, 0.0048, and 0.0012, respectively.

Moreover, for the second example, in Table 2 we give the absolute
errors |f(s;) —fa(s;)] for s =s; ==¢/6b and ¢ =1,2,...,5, where each
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J(s;) has been determined by (2.11) and each f,(s;) has been calculated
from (2.4) and (2.6)-(2.9) under the assumption that

n—21—1

t, = arccos(
n—1

), t=12...,n, m =3,

8(0) =1, 8(2)= -1, §(0)=2~8(2)=-5,
where 8(z) = (goh™), (2), g(t) = cos’(t), and h(f) = 1—cos(?).

TABLE 2
Absolute errors
8

n = b1 n = 101 n = 201
0.6283 8-610—' 7 6-210—' 8 7.610""10
1.2566 5.950—17 3.1;,0—8 1.0,0— 9
1-8850 2-810— 7 7-010— 8 7-110—9
2.5133 1.110—6 1.110—7 9-610_9
3.1416 6.8,0—15 6.2,0—16 5.710—17

All calculations were performed on the ODRA 1204 computer in
single precision (37-bit mantissa).

3. Numerical solution of equation (1.2). Assume that the functions
g and h have the same properties as those in the previous section. Moreover,
let g, be also defined as in Section 2. Differentiating (1.4), we obtain
the solution of equation (1.2) in the form

81) f(e)=

h'(s)sinaw
= ([h( ]’ : f 0 s)]l'“dt)

for all s € [0, R). Next, let us define the approximate solution f, of equa-
tion (1.2) by

R
h'(s)sinaw g(R) ga(?)
@) 146) = O G - | G —wmr a)

If we substitute g,(¢) in (3.2) by the right-hand side of (2.3), then,
ag in Section 2, we obtain the following numerical method to determine

Fa(s):

h'(s)sinaw g(R >
I R )]la—Zaa CEPYAO)]

j=1

10 — zastos. Mat. 17.4
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where
a;(8) = i[h(R)—h(s8)])"¢,,(B,s), +=1,2,...,m,
b =m 3 (") 0, T =12,
i=0
(3.4)
(A (B) —hk(s)]°c;(R, s) if h(s) = h(t),

B [2(R) —h(s)1c;(R, s) —[h(t;) —Rh(s)[e;(t;, ) if R(s) < h(ty),

and the functions ¢;(u, s), ¢ = 0,1, ..., m—1, are defined by (2.9). Using
similar arguments as in the proof of Theorem 1 we obtain the following

THEOREM 2. Let g, h, and e((goh™)’, A,) be such as in Theorem 1
and let a €(0,1). Then for every s e [0, R] we have

o (B 1)1k (s)sinax
aT

If(s)—Ffals e((gon™), 4,),

where f is the solution of equation (1.2) and f,(8) is defined by (3.3), (3.4),
(2.6), and (2.9).

Example. Now we solve numerically the following equation:

10
t6+t3=f—&)—ds, te[0,10].
; Vst —t2
By (3.1) this equation has a solution equal to

2s (8% +(15/2)s2 4250 [1 4015
3.5 8) = — — V100 —s? s*4-60s2- ]—
(B85 1) T { 100 —s2

3 ol 10+1/100—s21.
2 8 |

In Table 3 we list the relative errors

1f(85) —Fa(8:)]
If(s)l

TABLE 3

Relative errors

[

Relative errors

-]

1 2.750—9 6 2.1,0—9
2 4.8,,—9 7 1.5,0—8
3 1.9,,—8 8 3.1,0— 9
4 4.2,,—9 9 2.3,0— 8
5 4.9,0— 10
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In this example, s =8, =14 (¢ =1,2,...,9), each f(s;) has been
determined from (3.5), and each f,(s; has been calculated from (3.3),
(3.4), (2.6), and (2.9) under the assumptlons

10(i —1)

i=T’ 'i=1,2,...,51, m=3,

8(0) = 8(0) =0, §(100) = 1,001,000, &'(100) = 30,015,

where 8(z) = (goh™) 4 (%), g(t) = 1*+1°, and () = ¢’

Using our methods from Sections 2 and 3 to calculate the % values
of f4(8;), 0<8;,<8,<...< 8, < R, we propose, in view of [3] and (2.3),
to choose the knots #; so that the quantity

max{h(t;)—h(t;_,): ¢ =2, ..., 0}
min{h(t;) —h(t;_;): 1 = 2, ..., n}

is as small as possible and that the number of knots A(t;), 7 =1, 2, ..., n,
lying in each interval (s;_,,s;) (j =1,2,...,k+1, 8, =0, and 8, = R)
is proportional to the length s; —s;_, of (8;_y, $;).

The method proposed in this paper may give worse results than
the method described in [9]. For example, using smoothing spline functions
in the sense of Reinsch we have obtained, for the experimental data
considered in [9], Section 4, the approximate solution f, such that the
quantity

max {|f(i/30) —f(i/30)] : 4 = 0,1, ..., 30}

was equal to 0.0008 (see [9], Table 4). For the method from this section
this quantity is equal to 0.03. Therefore, to solve equations (1.1) and (1.2)
in the case h(f) =t?, p =1[i, and ¢ = 1/2,1, 2, ..., we prefer to use the
numerical methods from [9].

4. Final remarks. The crucial assumption in Sections 2 and 3 lies in the
differentiability of g. In this section we assume only that the function ¢
is continuous on [0, B] and that 4 is such as previously. Then we do
not express the solutions of equations (1.1) and (1.2) in the forms (2.1)
or (3.1), respectively. Indeed, in this case we do not interchange the
order of differentiation and integration in (1.4) and (1.3). Therefore,
by (1.3) and (1.4), we define the approximate solution f, of equations
(1.1) and (1.2), respectively, in the forms

sma'rc d R (t)g4(t)
(4.1) Ja(s) = [k(3) —h(H)T—°

7'|:

at, se[0,R],
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and

R
B sinafc_d_ h'(t)g,(t)
(42)  fuls) = - ——— f it eel0, B,

where ¢, is defined by (2.3).

Here two cases are possible.

First, assume that m > 1 in (2.3). Since the function g, is differen-
tiable on [0, R], we can interchange the order of differentiation and
integration in (4.1) and (4.2) and we obtain approximate solutions f, of
equations (1.1) and (1.2) identical to the approximate solutions obtained
in Sections 2 and 3 for the differentiable function g.

Second, assume that m = 1 in (2.3). Then the approximate solution
4 of equation (1.1) defined by (4.1) can by expressed as follows:

hd
(s) n

sinaw

fa(s) =

B (s) {aoh"-l (8)+ o

+ D B,00h(s), h(t)]

j=1

[h(s) —h (tj)]"}
- .

The approximate solution f, of equation (1.2) defined by (4.2) is
equal to

7a0) = 22 [aga(6) + axta) + > o)
where
hl
ay(s) = %[h(R) —h(OTY  a(s) = [h(s) — (1 —a)h(R)]aq(s),
b, (s) = {01(3)—7"(751)“0(3) if h(s)=h(iy),
T lauls) — it ao(s) —o(s) it B(s) < h(ty),

and
B (s)

a

c(s) =

[h(t) —h ()17 [h(s) — (2 —a) h(t)].

References

[1] J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The theory of splines and their
applications, Academic Press, New York 1967.

[2] C. J. Cramers and R. C. Birkebak, Application of the Abel integral equation
to spectrographic data, Appl. Math. Optim. 5 (1966), p. 1057-1064.

[3] C. A. Hall and W. W. Meyer, Optimal error bounds for cubic spline interpolation,
J. Approximation Theory 16 (1976), p. 105-122.



Abel integral equations 687

[4] P. Linz, A method for computing Bessel function integrals, Math. Comput. 26
(1972), p. 509-513.

[6] H. Malinowski and R. Smarzewski, 4 numerical method for solving the Abel
integral equation, Zastos. Mat. 16 (1978), p. 275-281.

[6] W. Pogorzelski, Integral equations, Vol. I, PWN, Warszawa 1953.

[7] C. H. Reinsch, Smoothing by spline functions, Numer. Math. 10 (1967), p.
177-183.

[8] R. Smarzewski and H. Malinowski, On the numerical solution of an Abel
integral equation, Zastos. Mat. 16 (1979), p. 497-503.

[9] — Numerical solutions of a class of Abel integral equations, J. Inst. Math. Appl.
22 (1978), p. 159-170.

[10] I. N. Sneddon, Mized boundary value problems in potential theory, North Holland
Publ.,, Amsterdam 1966.

DEPARTMENT OF NUMERICAL METHODS
M. CURIE-SKLODOWSKA UNIVERSITY
20-031 LUBLIN

Received on 30. 1. 1979;
revised verston on 21. 3. 1980

R. SMARZEWSKI i H. MALINO WSKI (Lublin)

NUMERYCZNE ROZWIAZYWANIE UOGOLNIONYCH ROWNAN CALKOWYCH
ABELA ZA POMOCA FUNKC]JI SKLEJANYCH

STRESZCZENIE

W niniejszej pracy przedstawiono pewne metody numerycznego rozwigzywania
uogélnionych réwnan catkowych Abela postaci (1.1) oraz (1.2), gdzie f jest szukanym
rozwigzaniem, 0 < a < 1, h jest &cifle rosnaca i ciagle rézniczkowalng funkcja w prze-
dziale [0, B], a g jest dang funkecja ciagla na przedziale [0, E]. Do konstrukeji przy-
blizonych rozwiazan tych réwnan wykorzystano funkcje sklejane (interpolujace lub
wygladzajace). Ponadto podano twierdzenia o zbieznofci oraz trzy przyklady nu-
merycznych obliczen.



