ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XIII, 2 (1972)

Z. GODZINSKI and L. STASIERSKI (Wroclaw)

GROUND-WAVE PERTURBATION
OVER A TRANSITION ZONE BETWEEN TWO DIFFERENT SECTIONS

LIST OF PRINCIPAL SYMBOLS

E, H = electric and magnetic field strength, respectively
HP, HY = Hankel function of the second kind and of the
zero and first order, respectively
= width of the transition zone
= frequency
= electric moment of the dipole
attenuation function
= distance along the path (see Fig. 2)
field impedance
intrinsic impedance of free space = (u,/g)'/?
surface impedance
= angular frequency
Ug> € = absolute permeability and permittivity of free
space
&, €, = absolute and relative permittivity of the soil
o = conductivity of the soil
¢’ = complex absolute permittivity of the soil
=& 6 = £—jo/o
g, = complex relative permittivity of the soil = ¢, —
—Jjo/(wgp)
4y = free-space wavelength
o = Iree-space propagation coefficient = w (uge)1/2
= 2n/l,
£ = & = 2ra/ly
6 = yod = 2rnd/[i,
Subscript ¢ at a vector denotes its tangential component.
Subscripts @ and b denote the zone with transmitter (a),
and the zone past the boundary (b), respectively.
The time factor exp(jwt) is suppressed.
Rationalized M.K.S. units are used throughout.
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1. Introduction. Because of the irregularity of the earth surface
and the electrical inhomogeneity of the ground and the atmosphere, the
problem of radio wave propagation over the real earth represents one of
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the most complex issues of mathematical physics. In a somewhat arbitrary
manner the problem is generally subdivided into a number of simpler
specialized cases which are solved by application of elaborate mathematical
methods under approximations which often are stated not sufficiently
clear or even are not mentioned at all. The impact of advanced mathematics
then makes one believe oneself to be confronted by rigorous solutions.
On hand of an example of ground-wave propagation across a boundary
between two different sections of the earth surface we shall discuss in
the present paper some of these approximations.

The adopted method of approach allows a clear and visual presentation
of the extent of the field perturbation appearing across and in the vieinity
of the transition zone.

The paper may also be of some interest from a purely formal point
of view, as it puts forward a novel method with a direct physical meaning
which may be of a potential use for a class of diffraction problems on
bodies of finite conductivity.

The preliminary numerical results of the research were submitted
to C.C.I.R. and U.R.S.I. [5], [6]. For a number of reasons the research
was brought to completion only recently. The presented theory and the
preliminary numerical results are due to one of the authors (Z.G.);
the final computational program was the responsibility of the othe of
the authors (L.S.).

2. The character of the electrical inhomogeneity of the earth. The
only parts of the earth surface which from the point of view of radio wave
propagation may be regarded as truly homogeneous are seas. The influence
of sea on radio wave propagation may be thus described in a unique manner
by means of a single complex parameter. Mathematically this may be
expressed by ascribing to the sea surface a unique value of the surface
impedance or by introducing other equivalent boundary conditions.
A detailed discussion of this problem may be found for instance in a mono-
graph by Godzinski [4].

In case of land the inhomogeneity of soil is of most casual and complex
character. For instance when performing measurements of electrical
conductivity of soil one is often surprised to find values differing by one
order of magnitude at places only a few meters apart. Also in the vertical
direction the distribution of ¢ and e, is usually of a complex character.
Moreover, only very seldom is this distribution of the form of a parallel
stratification. In general the strata — if present — are oblique, there
are lens-shaped inclusions ete. As discussed in [4], the influence of the
soil on radio wave propagation depends in such cases on the direction of
propagation. As a consequence, it is in principle not possible to characterize
the earth by a unique value of surface impedance. In the case of small-



Ground-wave perturbation 233

scale earth inhomogeneities at large distances from the transmitter or
receiver the differences of impedance are statistically averaged and as
a consequence some ‘‘effective’” values of conductivity and permittivity
or surface impedance can be introduced; some aspects of this problem
have been studied by Feinberg ([1], p. 121-136, and [2], p. 381-404).
If the inhomogeneous area lies near to the receiver the process of averaging
does not come into action. As a consequence it is in Pprinciple impossible
in such a case to characterize the corresponding area of the earth surface
by a unique value of the surface impedance.

The most pronounced difference of electrical parameters will be
found at the sea coast. At the same time this is the case of greatest practical
importance. Sharp contrast between sea and land comes into appearance
only in cases of a steep coast, cliff ete.; thus the inhomogeneity of electrical
parameters is in such cases accompanied by a drastic surface irregularity.

In the case of a “flat’’ coast where the surface irregularity is rather
small the variation of electrical parameters extends over some distance.
From an electrical point of view such a coast is a structure similar to that
shown in Fig. 1. Radio wave propagation past such a coast represents

Atmosphere
Land, Sea

Fig. 1. Cross-section through a coast-line
1 — sea water, 2 — wet soil, 3 — dry soil

a complex diffraction problem by a three-wedge system: sea water (1),
wet soil (2), dry soil (3). Because of the large attenuation inside the sea
water and the soil, the waves reflected from the boundaries 1/2 and 2/3
are so weak at large distances from the edge line A, that they can be
completely disregarded; as a consequence the corresponding sections
exhibit there properties characteristic of a homogeneous medium. At
large distances from the coast line the sections of the radio wave path
may thus be characterized by corresponding unique surface impedances.

The variation of impedance across the transition zone is in the present
case gradual, with some doubts as to the situation in the close vicinity
of the edge line A. In the theoretical case the edges of all three wedges
are ‘‘sharp” as the model assumes a discontinuous change of electrical
parameters across the whole surface of the boundaries 1/2 and 2/3 up to
the edge line A. In such a case the field most probably would show a sin-
gularity at the edge line 4. In practical cases, however, due to a gradually
changing content of moisture, constant movement of waves, surf etc.
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the electrical parameters of the media change continuously in the vicinity
to the line A, i.e. the boundaries 1/2 and 2/3 are blurred there. This makes
one believe that most probably no field singularity is to be expected at
the edge line A and thus the variation of effective electrical parameters
is, in practical cases, gradual across the whole transition zone.

When considering the wvariation of effective electrical parameters
across the transition zone, we must take into account that due to a complex
configuration of media these parameters will in principle show dependence
on the direction of wave propagation. For instance, when using the impedan-
ce concept this will not be that of a unique surface impedance but the
impedances will depend more or less on the direction of wave propagation
[4].

From a practical point of view we must also take into account that
even the ‘“‘flat’ sea-coast from Fig. 1 in fact represents a definite irregu-
larity of the earth’s surface. When comparing flat coast theory with results
of practical experiments this must be kept in mind as a considerable part
of the field disturbance at a ‘flat” coast is certainly caused by the dif-
fraction effects at the rising ground ([1], p. 178-186, [2], p. 368-381, [13]).

In the existing theoretical investigations the above doubts and compli-
cations in general are disregarded without any comment as to the ensuing
€rTors.

3. Mathematical formulation of the problem. Because present research
is concerned with the field in the immediate vicinity of the boundary
only, it is admissible to use the flat earth approximation and to assume
a homogeneous atmosphere. Accordingly the «y-plane will be taken
as the plane of the earth’s surface with the z-axis directed upwards towards
the atmosphere, characterized by a constant scalar permittivity.

It will be assumed that the earth surface consists of three zones of
different electrical properties. The zone a extends to the left of the line
x =0 (Fig. 2); the earth is there homogeneous with constant surface
impedance Z; = Z,. To the right of the line # = d there extends the zone
b with constant surface impedance Z, = Z,. In the transition zone ¢,
of width d, the effective electrical parameters of the soil change gradually
from values characteristic of the zone a to that chatacteristic of the zone b.

The transmitting aerial (aerial 1) is a short vertical dipole of electric
moment p situated just over the earth surface at the point 4, at a large
distance 7, from the boundary. The electromagnetic field produced by
the aerial 1 will be denoted by E,, H,.

We shall consider radio wave propagation across the boundary at
normal incidence; the direction of propagation will thus be assumed
parallel to the z-axis. In view of the large distance from aerial 1 to the
boundary, the wavefronts over the zones b and ¢ in the neighbourhood



Ground-wave perturbation 235

of the x-axis are parallel to the y-axis. As a consequence the magnetic
field H, just over the corresponding parts of the earth surface is also parallel
to the y-axis.

yA
I
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(aerial 1) | O\ (aeral2)
A 3n | SN2 ¢
X< ‘Td X-
. .
20ne “a”  ——et=-200€ “t"+L—, zone“b” ——
(ZS=Za) (ZS=Zb)

Fig. 2. Radio wave path

To make possible a close control of all approximations the analysis
must be founded on a rigorous basis. Out of a number of equivalent methods
of approach we shall choose in the present paper the vector integral
equation (6) from the paper by Godziriski [4]. To this purpose a second,
auxiliary and fictitious problem will be introduced: the same atmosphere
as before, a plane homogeneous earth of surface impedance Z, over all
three zones a, b and ¢, and a transmitting aerial (aerial 2) in the form of
a short vertical dipole of electric moment p situated just over the earth’s
surface at the point 4, at a distance @ from the beginning of the transition
zone. This auxiliary fictitious field will be denoted by E,, H,. We then
have

s B, — Ezz—ip f (E, x H,—E, x H,)-dS
w
S

where FE,, is the vertical component of the electric field E, at the point
A,, E,, is the vertical component of the electric field E, at the point
A,, and dS is a vectorial element of the earth surface, directed towards
the atmosphere. The integral in (1) extends in principle over the entire
earth surface. However, due to the properties of Fresnel zones only parts
of the earth surface near the z-axis are of practical importance.

Due to the assumption that the permittivity of the atmosphere is
a scalar quantity the ionosphere is excluded from consideration; as a con-
sequence the fields satisfy the reciprocity theorem. Consequently E,,
may be considered as the vertical component of the field which would
be produced at the point 4, by the dipole 1 over a fictitious homogeneous
earth of surface impedance Z,. The surface integral in (1) thus represents

7 — Zastos. Matem. 13.2
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the change of field caused by the presence of zones ¢ and b with electrical
‘properties different from those of the zomne a.

In the triple products (E x H)-dS only tangential components of
field vectors are of importance; introducing a unit vertical vector n
directed towards the atmosphere we obtain

(E, xH,)-dS = —(E;;x n)-H,,d8

and
(E2 X Hl) 'dS = ‘_(E2t X n) 'HudSu

In the case of a homogeneous earth of surface impedance Z, the
tangential components of electromagnetic field satisfy a relation
E,xn =ZH,

which is valid everywhere except in the immediate vicinity of the points
with field singularities. For the field E, we thus have

(2) (E2 XHI)'dS = _ZGHZt.HltdS'

This formula is valid over the whole surface S except at very small
distances from the point 4, where due to field singularity produced by
the aerial 2 the field impedance is no longer constant and equal to surface
impedance Z,.

In the case of the field E, we may write similarly

(3) (E1 XHz)'dS = _Z]_Hu'HztdS.

Over the zone a and b the field impedance Z, is equal to surface
impedance Z, and Z,, respectively. Over the transition zone ¢ the impe-
dance Z, changes in general gradually from value Z, to the value Z, as
has been discussed in Section 2.

Whereas the impedances Z, = Z, and Z, = Z, over the zones a and
b are the corresponding unique surface impedances which do not depend
on the direction of wave propagation, the impedances Z, over the elements
of the transition zone depend in general — as we have mentioned in
Section 2 — on the direction of wave propagation. As a consequence,
in cases of oblique propagation across the transition zone Z, may depend.
on the angle of propagation. For a very gradual transition this effect most
probably may be neglected; for a rapid transition the magnitude of this
effect is, however, by no means obvious.

Substituting from (2) and (3) into (1) we obtain

(4) By = By— = [ (Z,— 2)Hy Hyds.
wp F
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Over the zone a we have Z, = Z,; the surface integral from (4)
extends thus over the zones ¢ and b only.

The classical method of solution of integral equation (4) or of other
equivalent equations is based on a number of approximations:

(a) vectors H,, and H, are approximately assumed parallel;

(b) fields are expressed by means of conventional attenuation
functions which in principle describe the variation of the Hertzian vector
and not that of the electromagnetic field;

(c) due to the conventional approximations of the stationary phase
method the shape of Fresnel zones is approximated by ellipses for which
transmitter and receiver are at two ends of the ellipse long axis instead at
its focii.

Whereas all these approximations may be accepted at somewhat
larger distances from the boundary they certainly are inadmissible in
its immediate vicinity ([3], p. 449). Thus the classical mixed-path theories
([2], [12]) give results valid in principle at somewhat larger distances
from the boundary only; the accuracy of these methods at small distances
may be estimated from the discussion in Section 9.

4. Method of solution of the basic integral equation. The integral
equation (4) is the basic equation of present research. It is rigorous except
one questionable approximation consisting in application for the field
E, of a constant surface impedance Z, for the whole surface § including
the points in the immediate vicinity to A,. Inspection of classical theories
for homogeneous earth seems to confirm the applicability of this approxi-
mation; consequently it is generally adopted.

In order to perform integration in (4) we shall divide the earth’s
surface into narrow stripes parallel to the y-axis and of width d¢ which
we subdivide into surface elements dS = d&dy (Fig. 2). According to
the reciprocity theorem the field H,, which is generated at the point B
by a dipole of electric moment p situated at the point A, has the same
magnitude as the field H,, which the same dipole situated at B would
produce at 4,. When displacing the dipole from A4, to B we must change
the sign of the scalar product in (4) because this change means a reversal
of the direction of magnetic field. Thus, considering that the field H,,
has only the y-component, we obtain H,,-H, = —H, H,,. The contri-
bution from the surface element dS to the vertical component of the
resulting electric field is therefore

j Zl_Za

(5) dE, = —zo[(—@ Z Hl,,dfdy) H;,,].

The field dE, from (5) represents elementary field which is to be
added to F,, when computing E,,. The factor inside the round brackets
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is dimensionless. As a consequence the expression in the square brackets
may be considered as the y-component of the magnetic field produced
at the point 4, by a vertical dipole of moment

(6) ip =L 5% aeay

) Z, v
situated at the point B over a homogeneous plane earth of surface impe-
dance Z,.

The physical sense of this result is very simple. The influence of the
earth surface on radio wave propagation is due to electric currents and
charges induced in the earth surface by the primary wave. These currents
and charges constitute secondary sources of radiation. The final field
is a superposition of the primary field, the secondary field, the ternary
field caused by the secondary radiation, etec. In case of a homogeneous
earth these secondary sources etc. are of definite nature and distribution.
Any surface element of a different surface impedance represents thus some
additional (difference) source as compared with the previous homogeneous
case. This is just the situation expressed by (4)-(6): the difference between
the field E,, for the inhomogeneous earth and the field E,, for the homo-
geneous earth is due to the presence of some additional sources which
when placed over the homogeneous earth are equivalent to the influence
of a change of electrical properties of the ground.

The situation expressed by (5) and (6) occurs for all surface elements
df from the shaded strip in Fig. 2. Thus the contribution to the field from
the whole strip (4E,) amounts to the product of ( —Z,) and the y-component
of a magnetic field generated by a continuous array of vertical dipoles
situated along the strip. The distribution of these dipoles is homogeneous
with a constant density g of electric moments per unit length

‘ ap j
@ =% "% 7

If we remember that a dipole is an arrangement of two equal and
opposite charges, then it follows that the described continuous distri-
bution of dipoles represents in fact a double line source of constant density g.
This line source is parallel to the y-axis and of a vertical polarization.

Because of symmetry properties of the described line source the
magnetic field generated by it is parallel to the y-axis. We may thus restate
our previous formulation so that 4E, may be considered as the product of
(—Z,) and the magnetic field (4H,) generated by our double line source
over a homogeneous earth of surface impedance Z,. Such product, however,
is just the vertical component of the electric field produced by the line
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source
(8) E, = —Z,H,;

this follows for instance at once from (42) in [4]. Again, this result is valid
in principle all over S except in the immediate vicinity to the line source.

We thus see that the physical content of (4) is quite simple: the field
perturbation generated by a strip of a surface impedance different than
that for the remaining part of the path is the same as the field produced
by a suitable vertically polarized double line source. Knowing the primary
field it is thus possible to calculate in a more or less direct manner the
field perturbation caused by a change of electrical properties of a conduct-
ing body.

The proposed method of approach is especially straightforward
in cases when the change of electrical properties is comparatively small.
Such a situation may be found for instance if we consider the important
problem of diffraction by a body of large but finite conductivity. The
field existing in the case of perfect conductor could then be used as the
reference solution; at the surface of the diffracting body is then Z, = 0.
Transition to the body of the same shape but of finite conductivity means
replacing Z, = 0 by a suitable non-zero value. This change of boundary
conditions is especially small for metals; in such a case the final solution
could be probably obtained by calculating the first order perturbation
only. Should this method prove convenient from the computational
point of view it could perhaps help to solve a number of important problems
of diffraction by real conductors.

5. Computation of the resultant field of line sources. In the present
investigation we are interested in the field structure at the immediate
neighbourhood of the transition zone only. Consequently, it is sufficient
to derive expressions for the field of double line sources at very small
numerical distances. At such distances the attenuation of waves comes
not yet in appearance and the field is practically the same as over a per-
fectly conducting plane. The field is thus twice the field the considered
double line source would produce in a homogeneous unbounded atmo-
sphere, or — which for all practical applications is the same — in free
space.

In order to solve the problem we may conveniently introduce a verti-
cal Hertzian vector II. The Green function for the considered free-space
problem (Fig. 3) is equal to (see [8])

G(e/e) = —j:H(()z)(yoR),

where H(® is the Hankel function of the second kind of order zero.
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The only component of the Hertzian vector (II,) and the magnetic
field H' of the double line source are given by formulae

IT, = [g/(4me,) ]G (0/0) and H' = jwe, curlIT.

A

A g
1 0 §
, € X X

Fig. 3. Geometry of the double line source field

A4; — primary source, g — double line source, P — point of observation

As expected, this gives H, = H, = 0. For the y-component of H'
we obtain

r_ goyo v —§
(9) Hy = == —2—HP(nR),
where H{? is the Hankel function of the second kind of first order. As
stated previously this field is to be multiplied by a factor of 2 and cal-
culated for the points P lying just over the plane xy. Taking into account
(7) and (9) we get for the contribution from the elementary strip

(10) AEZ=(—Zo>[”’° I lagy Tt

v (2) _
2 Zo Wlm_EIHl (YOI‘” 5|)df:|

Integrating (10) over the zones ¢ and b and adding the resulting value
to E,, we obtain the final formula for E,, as

%o [ Zy—Z, . x—&
.7 Hly
2 : Z, |z — &

(11) Elz: E2z— H(f)()’o |z — &[)dE.

This equation may be transformed by introduction of the convention-
al attenuation function w,(r)

oiuy P .
(12) By, = =2 Zwy(rexp(—jrr),
T 7

where r = r,+2 is the distance from the transmitter to the point of
observation (point A4,). Next it is necessary to calculate H,,. In the
case of a homogeneous earth equation (8) makes it possible to obtain
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H, at once from E,. Applying formula (8) also in the present case of an
inhomogeneous earth we have from (12)

1 o
Zy 27

(13) H, - 2 w(r)exp(—jyor).

It must be stressed, however, that in the case of an inhomogeneous
earth with rapid changes of electrical properties application of (8) may
be connected with considerable errors (see for instance Section 7 in [4]).
Substituting from (13) into (11) and denoting by w, the attenuation function
for the homogeneous earth of surface impedance Z, we obtain

w, (7o + ) Wo(To +2)

(14) —
To+@ To+
o [ Bi—Z, wy(r,+ &) , o—& .
—l—— — &))dé.
T ) 7, rnté exp [jro(@— )] — Hi (rolw — £ d¢

In the present investigation we are interested in the field in the im-
mediate vicinity to the boundary only. Consequently (7, + x)/(r,+ &) =~ 1;
the distance factors (r,-+x)and (r,+ £)in (13) may be thus approximately
omitted.

In the first-order approximation the attenuation function w,(r,+ &)
under the integral sign may be assumed as constant and equal to the value it
would show over a homogeneous earth of surface impedance Z, at a distance
7o (see Fig 2):

wy (1o + &) =2 wg (7).

The final results will show when this first-order approximation is
admissible.
Taking into account that x < r, we may also put

Wo (7o + ) =2 Wa(To);

this approximation is not objectionable. Under these approximations
(14) takes on the final form

wi(ro+x)

15 =1
(16) Wa (7o) +

Ve [ 21— 2, o e T —&hd
+ f 7o exPUro(o — )] = B (rolo— E1)de.

The integral equation (14) has thus been transformed into an integral
formula which may be evaluated by directed quadrature.
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6. Variation of impedance across the transition zone. As discussed
in Section 2 variation of impedance is in the case of a flat coast most
probably gradual over the whole transition zone. Introducing dimensionless
contrast parameters 3 and 3,

(16) 3 = exp(—jn/4)(Zy—Z,)[Z,,
31 = exp(—jn/4)(Z,—2Z,)/|Z,

we thus have
(17) (Zy—2Z,)|Zy = 3Xp(+jn/4).

In particular, over the zone a where Z, = Z,

31e = 0,
and over the zone b where Z, = Z,
(18) 3 = 3-

Over the transition zone ¢ we shall assume for simplicity a linear
variation of impedance

3 = 3(&/d).

For homogeneous ground of given electrical parameters the surface
impedance Z, may be calculated [4] as a good approximation from formula

(19) Zy = Zy(e) V" = Zy[e,—jo [(we) 1.

In case of a well conducting ground and a not too high frequency
e, € 0/(weg). We may thus omit ¢, in (19) which gives for the contrast
parameter approximate formula

3 = (&) [(1/Vop) — (1/V5,)]
= 7.45 X 10~ VF[(1 Vo) — (1 Vop)]-

For well conducting path sections the contrast parameter is thus
real. Values of |3| for number of cases are shown in Table 1.

The assumption of a linear variation of impedance across the transi-
tion zone which has been adopted in the present research is for purely
mathematical reasons in principle inadmissible. This is caused by the basic
demand characteristic of all theories of the problem that all field vectors
be continuous together with their first and second derivatives; the discon-
tinuities if present must be excluded by suitably deforming the surface
of integration. The demand of field continuity means in our case that
impedance Z, together with its first and second derivatives be continuous
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TABLE 1. The magnitude of the contrast parameter 3

‘ Frequeney f ' |
Type of boundary [ — i

S | 100 kHz | 500 kHz ! 2 MHz
dry ground fsea | 0.073 0.164 | 0328 |

| wet ground /sea | 0.022 0.05 { ;6_;0 - E

Y_dry ground/wet ground 0.051 ().1i4 7 0.228 I

Conductivities: dry ground ¢ = 10-3Q~!m~1, wet ground ¢ = 1072Q~1m—1,
sea ¢ = 4Q~Ilm~!

across the transition zone. Instead of linear variation with constant slope
(Fig. 4, full line) a variation with a changing slope (Fig. 4, dashed line)
should thus in principle be assumed. However, inspection of (15) and

IV

zone “a” zone“t” | zone “b”

Fig. 4. Variation of impedance Z across the transition zone ¢
linear variation
—————— variation consistent with premises of theory

consideration of final numerical results show that for the range of para-
meters used in the present research the errors connected with the assump-
tion of a linear impedance variation are completely negligible.

7. Transformation of final formula to dimensionless form. Substitut-
ing from (17) and (18) into (15) and introducing dimensionless distances

(20) { = yor = 2wz [Ay, 0 = yod = 27d /4, % = Yo(&—@)
we obtain

Wy (7o + @) exp( —jm/4 o
Qn) SIS =14 {—I’——J—[ f jul exp ( —juu) HO (jul)dus+
—i+8

+2 [ exp(—ju) HE(lul)du-+3 f 2 exp(~ju) H () au .
-

ul s
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The expression in braces is a function of parameters ¢ and é only;
we shall denote it by W ({, ). Equation (21) then takes the final form

w(ro+ )

@2) Wa(o)

= 1+3W(C7 6)7

where the subscript 1 in w, (7, + ) has been suppressed as now superfluous.

Equation (22) shows that field variations in the immediate vicinity
to the boundary depend on the product of two factors: the contrast pa-
rameter 3 and the function W which in turn depends on the width of the
transition zone (parameter J) and location of the point of observation
(parameter ¢).

The computation of the function W({, ) may be facilitated by intro-
ducing four auxiliary functions A,(«), B,(u), A,(x) and B,(u) defined
as follows:

A (u) = %e"'"/“fe“"“Hf)(u)du
= — e e [(L+ju) HY (v) —uHP (0)];

B,.(u) = ée‘j""‘fue"'"ﬂ(f’(u)du;
0
Ay(u) = 37 [ et HP (u)du
= —de et (1 —ju) HY (u) —uHP (w)];
u
B,(u) = %e‘j"/‘fue”“ﬂ{”(u)du.
0

We then have:
over the zone a, i.e. in front of the boundary

23) W, 0)
= 3B~ 4 )~ B(—0)— (L + DA, (—L+ ) — LA (~D);
over the transition zone ¢
(34) W, 8) = 5 [B.(6—0)+ BiD) — (34,0~ 0)— L4, (&)
over the zone b, i.e. past the boundary

(26) W(,9) = _]:S— [Bi(&) — Bi(£ — 6) + (£ — 8) A ($— 8) — LA,(0)].
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At the boundaries of the transition zone the auxiliary functions
exhibit singularities. However, when multiplied by the corresponding
factors from equations (23)-(25) they give a continuous and free from
singularities variation of W({, §) across the boundaries.

8. Numerical results. The numerical computations were made dif-
ficult by the fact that W (¢, §) is obtained as a small difference of com-
paratively large functions. In order to achieve a reasonable precision of
final results it was thus necessary to perform calculations of the auxiliary
functions 4,, B,, A, and B, with great accuracy.

All calculations were carried out on a digital computer (Elliott 803)
in two modes of programming. The first one was based on Autocode Mark 3
because of its simplicity in programming. Since any arithmetic operation
in Autocode is carried out with accuracy not exceeding 27% (=~10"%7),
the final results of the computations of the function W (Z, 6) were off the
desired degree of accuracy. In order to exploit the total possibility of the
computer the second mode of programming was based on Basic 803
Instruction Code which assures operational accuracy of the range 2.
This mode, however, involves certain difficulties since each number x
Participating in any arithmetic operation must be in the range —1 <z
< 1. Most steps in the present problem required calculations to be done
with numbers exceeding unity in magnitude. It was therefore generally
necessary to scale all numbers by a suitable fdctor, to examine all results
of addition and division, and to re-scale all results of multiplications.

The functions H{?(u) were expressed as

HP (u) = Ji(u) —j Y (u),

Where J,(u) and Y,(u) denote Bessel and Neumann functions, respec-
tively. Hence the real and imaginary parts of A,.(%), 4,(u) functions and
also the integrands b,(u), b,(%) in the formulas

B,(u) = [ b(u)du, By(u) _—_fb,(u)du
[/]

may be expressed in a general shorthand form
F = Flu,sinu, cosu, Jo(u), Yo(u), I (u), ¥ (w)].

The values of the J,(u) and Y,(u) functions were determined from
the known series expansions in which all the terms of the range less than
10-° were neglected. As the function Y, (%) has a logarithmic singularity
Dear 4 = 0 a function V,(u) = uY,(u), properly adapted, was evaluated
Instead of the first one.
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'The values of the A,(u), A,(u), B,(u), B;(u) were computed in the
range 0.1 (0.1) 16.0. In order to perform numerical integrations the b,(u),
b,(u) functions — and therefore the J,(u), #Y,(u) and associated trigo-
nometric functions — were computed in the range 0.0 (0.02) 16.0.

In any interval (a, ¢ +0.1) the integrands b,(u), b,(#) were replaced
by an interpolating polynomial of order five. The integrations were per-
formed by the use of the Newton-Cotes formula which may be written
in the following form:

a+0.1

[ f@dn = o (190 +f(@+ 0014 75 [f(a-+0.02)+

+f(a+0.08)]+50[f(a+0.04) +f(a -+ 0.06)]}.

The values of W({, 6) were calculated for the following values of
é: 0.3, 0.6, 1.0, 1.5, 2.0, 3.1, 5.0, 6.3, 8.0, 9.5, and 11.0. Besides, W({, 9)
was computed for additional twelve values of parameters (, ¢; this was
needed when drawing the plot from Fig. 7b. '

In the process of computation almost the total store of the computer
was used (4096 locations). 3604 locations of the store were occupied by
the values of b,(%), b;(») functions, and the rest by the program and sub-
routines. The program in blocks is shown in Fig. 5.

s Main
Programme
haY J I P od
y f"‘\i_u_-\::ﬁ \
Regular sin u
parts of uln(05u) Jo(uw), J3(w) ’
Yo(w), V4 (w) cos &
I | |
' ‘
uYo(u), | Br(w=brdu Ar(u)
uYy (u) br(u), bt g, () ~fhedu At ()
[ l E B
4
I
Store | wie

Fig. 5. Block diagram of computation programme
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& 2} 12 _ E7F 24 ]
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=0 = .
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-05 -05 2 -05 o -05 {
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Fig. 6. Plots of W (¢, 8) = f({) for §6 = parameter

plots according to (22)
______ variation according to classical theories in compliance with (27)
The ends of the transition zone are indicated by heavy marks

The results of computations in form of polar diagrams are summarized
in Fig. 6a and shown in more detail for six values of é in Figs. 6b-g.

The behaviour of W (¢, 8) for large negative { (i.e. at comparatively
large distances in front of the boundary) is shown in detail for one value
of & only (Fig. 7a). For other values of 6 the character of W({, é) for
hegative ¢ is similar (see Fig. 6) but magnitude of the effect is different;
this may be inferred from Fig. 7b.
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02+
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%
1~ E=-04 0 | ] ] 1 1 |
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Fig. 7. Behaviour of W ({, ) for large negative values of ¢
@) W(t,8) = () for & = 0.3
(b) ¢ = f(6) (parameter ¢ is explained in Fig. 7a)

An example of field variations is shown in Fig. 8. For the purpose
of illustration a dry land-sea path of a pronounced contrast was assumed.
The electrical parameters of the ground are ¢ = 1073Q'm~' and ¢, =4
and that of the sea ¢ = 4Q 'm~' and &, = 80. Frequency is 1 MHz,
the width parameter 6 = 1; according to (20) the width of the transition
zone is thus d = 04y/(2n) ~ 48 m. The contrast parameter 3 calculated
according to (16) and (19) is 3 = 0.229V7%3%

The variations of w(r,+ z)/w,(r,) as calculated from (22) are shown
in Fig. 8a in form of a polar diagram; Fig. 8a shows thus at the same time
changes of magnitude and phase of the field. In Fig. 8b we have a plot of
lw (7o + &) jw,(7,)| as a function of {; this diagram gives a conventional
picture of changes of the field with distance.

9. General character of field variations across the transition zone.
As follows from Fig. 8 and the plots of W({, 6) from Fig. 6 the field in
front of the boundary has an oscillatory component. This behaviour is
of an obvious physical nature and is connected with the fact that over
the zone a the secondary waves propagate in the backward direction.
As a consequence the primary and the secondary waves show rapidly
changing phase differences. When interfering these two waves produce
a final field changing from point to point in a manner characteristic of
a standing wave. In accord with this explanation the periodicity of the
fluctuations should approximately be equal to 1,/2; expressed in (-units
the period should be equal to about x». This is in agreement with the
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Fig. 8. Field variation across land-sea boundary (transmitter on land section; 6 = 1;
f =1MHz)

t — transition zone. The ends of the transition zone are indicated by heavy marks
plot according to (22)
______ variation according to classical theories in compliance with (27)

results of numerical calculations (see for instance Fig. 7a) and a formula
which may be derived for W (¢, d) for large negative values of ¢.

With increasing distance from the boundary the plots of W (¢, 6)
are for negative ¢ of a shape of a tightening spiral. This means that fluctua-
tions diminish when moving away from the boundary. It may be shown
that at large distances from the boundary the amplitude of fluctuations
decreases as (—¢)~'?, i.e. is inversely proportional to the square root of
distance. This is, after all, obvious from purely physical reasons: the ele-
mentary secondary waves have the nature of cylindrical waves and must
decrease with distance so as to carrya constant power across cross-sections
which increase in proportion to distance. As a consequence the electro-
magnetic field of these waves must be inversely proportional to the square
root of distance.
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For a given contrast between the two sections of a path the largest
intensity of the return wave and consequently the largest oscillations of
field strength occur for a narrow transition zone; for wide transition zones
they are much smaller (see Fig. 7b). For certain widths of the transition
zone the return wave is very weak. As follows from Fig. 7b the correspond-
ing minima occur for ¢ = 2rd/2y = nr (n =1, 2,...). We thus see that
in the cases of transition zones of the widths d = n4,/2 there occurs ap-
proximate ‘“matching’ of the zone b with the zone a. The field in front
of the boundary shows then practically no intensity fluctuations. This
fact may perbaps serve as an explanation of discrepancies in the obser-
vations of field behaviour in the vicinity to a boundary where some authors
reported presence of field fluctuations whereas others did not notice this
phenomenon.

The magnitude of field fluctuations — especially for wide transition
zones — is not large. As follows from Figs. 8 and 7b and Table 1 the am-
plitude of field oscillations does not exceed at the most a few per cent and
that of the phase about one or two degrees; the fluctuations of such magni-
tude may appear in the neighbourhood of a sea coast. In the cases of
overland propagation the field perturbation is generally much smaller,
in proportion to the actual value of the contrast parameter 3. From a prac-
tical point of view the fluctuations are then in many cases completely
negligible, in particular for somewhat wider transition zones.

The field variations over the transition zone are in general gradual
except at small values of d when there comes into appearance an increas-
ingly strong local field perturbation over the transition zone (Fig. 6a).

When 6 — 0 this perturbation develops into field singularity ([9],
[10] and [2], p. 374-375). The case represents then formally a disconti-
nuous change of surface impedance. However, this formal limiting process
d — 0 is not equivalent to the consideration of an abrupt physical boundary.
As discussed in Section 2 in the case of an abrupt real boundary there
exist fundamental doubts as to the physical nature of the considered
singularity. In general, singularities in current and charge distribution
are there to be expected; besides, the impedance would certainly not be
constant up to the very boundary. Moreover, an abrupt coast represents
in practice always a definite surface irregularity which makes the problem
the more complex. There also comes into action an additional factor of
purely formal character: taking the limit 6 —~ 0 we must allow for the
fact that the field over the transition zone is increasingly different from
the primary field which would there exist in case of a homogeneous path.
Consequently, it is not admissible to use a first order perturbation approach
which was employed in the present research like in other similar investi-
gations. Summing up the above remarks we are led to the conclusion
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that as yet the problem of an abrupt physical boundary must be con-
sidered as an open question.

Past the boundary, i.e. over the zone b, the primary and the secon-
dary waves propagate in the same direction; their phase relations are
thus approximately constant. As a consequence, the resultant field changes
monotonically with distance and shows no fluctuations. For not too wide
transition zones at distances z > 1,/(2n) an asymptotic expansion of
W(¢, 6) vields

(26) W(ry+ ) fwy(r) = 1—3(2/m) 2312,

Absence of the parameter 6 in (26) may be easily explained by the
comparatively small contribution from the transition zone as compared
with much larger contributions from the parts of the zone b up to the
point of observation.

Introducing a numerical distance ¢ = sz, where

2
Sz—j'————;yo ':"‘jﬁg‘i7
2(e,+1) 2 \z,
we obtain from (16) and (26)
w (1 + ) .2 -
27 — =1—=]— (Vs — ‘
(27) —r— J = Vs, Vs)Ve.

This is, however, a formula of classical mixed-path theories for points
at small numerical distances past the boundary (see for instance equations
(56) and (34) in [3]). At larger distances past the boundary the present
theory goes thus asymptotically over into classical theory. This settles
the question raised in Section 3 as to the validity of classical theories of
mixed-path propagation and at the same time furnishes a verification
of the present theory.

The asymptotic behaviour of the attenuation function according
to (27) has been plotted in Figs. 6 and 8 by means of a broken line. It
may be seen from these figures that beginning at about a wavelength from
the middle of the transition zone the classical theories show practically
negligible errors. If in the considered practical applications the small
field perturbations existing in the neighbourhood of the boundary are
of no importance then for not too narrow transition zones the classical
mixed-path theories prove to be sufficiently accurate up to the boundary
and across it.

8 — Zastos. Matem. 13.2
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10. Conclusions. As the discussion has shown, in the cases of com-
paratively broad transition zones the results of the present research
and of other similar investigations ([2], p. 368-381, [7], [9]-[11], [13],
[14]) are valid with considerable accuracy. The field perturbations are
then rather small. Much larger effects are to be expected in the neighbour-
hood of an abrupt coast. This much more interesting and important
problem, however, presents serious theoretical difficulties and doubts.
It awaits still a reliable solution and the existing theoretical results must
so far be considered with considerable caution.
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Z.GODZINSKI i L. STASIERSKI (Wroclaw)

ROZCHODZENIE SIE FALI PRZYZIEMNE] NAD STREFA PRZEJSCIOWA
MIEDZY DWOMA ROZNYMI ODCINKAMI TRASY

STRESZCZENIE

W pracy przeprowadzono dyskusje zagadnienia zaburzenia pola fali przyziemnej
w okolicy strefy przejéciowej pomiedzy dwu réznymi odcinkami trasy. Zastosowana
metoda analizy daje jasny obraz sytuacji fizycznej oraz wielkosci efektu. Pozwolila
ona réwnoczefnie na przeprowadzenie krytycznej dyskusji konwencjonalnych przy-
blizei. Uzyta metoda moze réwniez mie¢ pewne znaczenie przy dyskusji zjawisk
dyfrakeji fal elektromagnetycznych na ciatach o skonczonej przewodno&ci. Pokazano,
ze w przypadku stopniowego przejscia miedzy dwu odcinkami trasy przed granica
dwu réznych stref wystepuja niewielkie fluktuacje pola o charakterze fali stojacej.
Fluktuacje te nie przekraczaja kilku procent w wielkoéei i jednego do dwu stopni
w fazie. Najwieksze fluktuacje wystepuja w przypadku waskich stref przejéciowych.
Dla okreflonych szerokosci strefy przejéciowej fluktuacje wykazuja glebokie minima,
to jest wystepuje dopasowanie obu odcinkéw trasy. Po przekroczeniu strefy przejscio-
wej pole zmienia si¢ monotonicznie i na odlegloéciach wiekszych niz okolo dlugosé
fali jest praktycznie takie samo jak przewiduja to konwencjonalne teorie tras mie-
szanych. Przeprowadzono krytyczna dyskusje waznego zagadnienia bardzo waskiej
strefy przejSciowej. Stwierdzono, Ze zagadnienie to stanowi ciagle jeszcze otwarty
problem naukowy, ktéry do obecnej chwili nie znalazl zadowalajacego rozwigzania.



