ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XVII, 3 (1982)

I. CZOCHRALSKA (Warszawa)

THE METHOD OF BILINEAR PROGRAMMING
FOR NONCONVEX QUADRATIC PROGRAMMING

1. Introduction. The subject of this paper is the solution method of the
nonconver quadratic programming problem (problem NQP) with a non-
negative definite quadratic form. The set of its feasible solutions is a convex
polyhedral set, not necessarily bounded. The problem may be stated as
follows:

ProBLEM NQP. Maximize

(1.1) G(x) = h"xz +x2"Qx
subject to
(1.2) xeX ={xeR"|Ax =c, x>0},

where @ is a symmetric nonnegative definite matrix of order =, rank A4
= k<n, heR" and ¢ € R".

Problem NQP belongs to a class of mathematical programming
problems having many local maxima in the vertices of the set X. Hence,
its optimal solution is in some vertex of X. This results from the convexity
of the function G(x).

Problem NQP may be solved by the algorithm of bilinear programming
(given in [3]) modified to the form corresponding to problem BLP1 stated
.in Section 2 of this paper. The possibility of solving the problem NQP
by an algorithm of bilinear programming has been also noticed in papers
[1], [6] and [8]. However, due to some important properties of problem
NQP, presented also in Section 2, we state such necessary and sufficient
conditions for the existence of an optimal solution the verification of
which is reduced to the solution of problem LP (linear programming)
only; this result is in contrast to problem BLP (bilinear programming).
Thus, an algorithm for solving the problem NQP, presented in Section 3,
is simplified drastically in relation to the method of bilinear programming.

In most methods dealing with problem NQP one usually assumes
that the set of feasible solutions is bounded (compare with [6] and [8]).
In papers [2] and [9], only the existence of an optimal solution is assumed
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but both of the procedures require finding max{g(x) | * € X}, where
g(x) is the function defined by (2.11) in this paper. Unfortunately (as our
Example 1 shows), the existence of such a maximum is not even a con-
sequence of the existence of an optimal solution of problem NQP. Thus
the lack of some additional assumptions (such as, for example, bounded-
ness of the set X) makes the methods proposed in [2] and [9] incorrect.

On the other hand, in [2] it is additionally assumed that there exist
values s; (defined by formula (2.1) of this paper). But this fact, in the
case of problem NQP, is a simple consequence of the boundedness of the
function G (x) (see Corollary 4). Let us notice that in the case of problem
BLP, which (according to the author’s claim) may be solved by the same
method, the existence of s; is only a sufficient condition for the existence
of an optimal solution of problem BLP (see Theorem 6 in [3]).

In paper [1] the general problem NQP is congsidered but the method
proposed for solving the problem BLP fails to be proper. More exact
remarks concerning paper [1] are given in Section 1 of [3].

2. General properties of problem NQP. We start with discussing the
relations between problems NQP and BLP. Let us consider the following

ProBrLEM BLP1. Maximize
1 T 1 T T
(%) F(x,y) =§h w+§h y+y Qx

subject to (x, y) € X x X, where h, @, X are defined as in problem NQP.

This problem is a particular case of problem BLP, discussed in [3],
where A = B,a = b = }h e R", ¢ = d € R* and, consequently, X = Y.
Problem NQP is equivalent to the following

ProBLEM NQP1. Maximize (*) subject to (x,y) e X x X and * = ¥.

The equivalence of problems NQP and NQP1 is established in the
following obvious remark:

Remark 1. The point a° is an optimal solution of problem NQP if
and only if the point (x°, 2°) is an optimal solution of problem NQP1.

Clearly, problem NQP1 is not a problem BLP because the condition
x = y appears. However, the following theorem allows us to use the bi-
linear programming algorithm for the solution of problem NQP.

THEOREM 1. If (x°,y° is an optimal solution of problem BLP1,
then also the points (y°, x°), (x°, x°), (y°, y°) € X x X are optimal solutions
of the problem.

Proof. By the symmetry of the function F(x,y) we have F(x°, ¥°)
= F(y°, ®°), which implies the optimality of (y°, x,).
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Let 2° = F(x°, y°) = F(y°, °). Then
F(x°, %)+ F(y°, y°) — F(x°, y°) — F(y°, %) = (y°—a°)"Q(y°—=x°) > 0,
since @ is nonnegative definite. Hence
F(x°, 2%+ F(y°, y°) = 22°.
But, on the other hand, it is known that
2° = max{F(x,y) | (x,y) e X x X},
thus
F(x 2°)<2° and F(y° y°) < 2°.
From the last three inequalities it follows that F(x°, 2°) = F(y°, y°)

= 29, Thus the points (2°, °) and (y°, y°) are optimal solutions of problem
BLP1. The proof is completed.

From the proof of Theorem 1 we obtain

COROLLARY 1. Let @ be positive definite. If the point (x°, y°) is an
optimal solution of problem BLP1, then x° = y°.

Remark 1 and Theorem 1 show that all properties of problem BLP
may be transferred to problem NQP.

Let X, denote (as in [3]) a convex hull of all vertices of the set X
and let X, be a convex polyhedral cone of the form

X, ={xeR"|Ax =0, x > 0}.

A special version of Theorem 1 from [3] is the following

THEOREM 2. The function G(x) 18 bounded from above on the set of
Jeasible solutions of problem NQP if and only if the following conditions hold:

(i) ®TQx = 0 for ¢ € X;

(i) 3rTx +yTQx < 0 for (®,y) e X, x X,.

Proof. Let * € X, and y € X,. The thesis follows from the fact
that y+1x € X for any 1> 0 and

G(y+ix) = G(y)+A(h"x+2y" Qx) + Pz Q.

Let us notice that the equality in (i) follows from the nonnegative
definiteness of Q.

From Theorem 2 and the definition of problem NQP we obtain

COROLLARY 2. Let @ be positive definite. Then the function G(x)
18 bounded from above on the set X if and only if the set X is bounded.

Proof. The sufficiency follows from the Weierstrass theorem. To show
the necessity suppose that X is unbounded. Then X, # {0} and for
e X,— {0} we have Z'Qx > 0 since @ is positive definite which, by (i)
of Theorem 2, implies that the function G(x) is unbounded from above
on the set X. This contradiction completes the proof.
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THEOREM 3. The function G(x) is bounded from above on the set X if
and only if the linear form h™ x and the quadratic form x™ Qax are also bounded
Jrom above on X.

Proof. The sufficiency follows from the inequality
max{G(x) | € X} < max{hTx | x € X} + max{x"Qx | ® € X}.

Let us suppose now that the quadratic form ™ @ is unbounded from
above on the set X. Then there exists a point @ € X, such that 2TQx > 0.
Hence the function G (x) is unbounded from above on the set X according
to condition (i) of Theorem 2.

Now, let us notice that for any x € R" the inequality

hTx < h™x+2™Qx = G(x)

holds, since @ is nonnegative definite. Therefore, if hT® is unbounded
from above on the set X, then G (&) is also unbounded from above on X.
This contradiction completes the proof of the necessity.

In order to state further properties of problem NQP we prove some
properties of a nonnegative definite matrix @ = [g;;].

LEMMA 1. If @ is a monnegative definite matriz and if there exists
g;; = 0 for some j € {1, ..., n}, then the j-th column and the j-th row of the
matric Q are zero vectors.

Proof. Let ¢; = 0 and ¢; # 0 for some ¢ #* j. Taking the point
x € R® with coordinates

M for l =j,
7 =11 for | =1,
0 forlefl,...,n}—{,j},
we have x"Qx = g+ 2q; M.
It is easy to choose such an M that x"Qx < 0 for given ¢,; and g;; # 0,

which contradicts the assumption that @ is nonnegative definite. This
completes the proof.

Since all elements g;;, of the main diagonal of a nonnegative definite
matrix  are nonnegative, we obtain the following corollary:

CoROLLARY 3. If Q s a nonnegative definite mairiz and if q;,; # 0
for some j # i, then q; > 0 and q; > 0.

Now, let us introduce a vector s € R* with coordinates defined by
the formula
(2.1) 8; = max{q,x |xe X} forje{l,..., n},

where q; denotes the j-th row (equal to the j-th column) of the matrix @.

THEOREM 4. The nonnegative definite quadratic form x*Qx is bounded
Jrom above on the set X if and only if 8; < + oo for all j € {1, ..., n}.
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Proof. We can assume g¢;; > 0, since otherwise we would have
8; = 0 (according to Lemma 1). Applying the first step of the Lagrange
method for transforming the quadratic form axTQx into its diagonal form,
we obtain (see [4])

n

T 1 ?
T Qx =Q_<Z jSxi) FF (@5 ey Bjoay Bjns -0y Bp),

753

where f is a nonnegative definite quadratic form of » —1 variables. Hence, if

8 = max{i:1 4;:%; |:teX} = + o0,

i=1

then the quadratic form ®TQx would be unbounded from above on the
Set X. This proves the necessity.

To prove the sufficiency, let us notice the following property of
Problem LP:

8; < +oo implies § = max{q;x|xeX,;} =0.

Hence 0 < ®TQxr <s"x = 0 for any x e X, and y"Qx <s"y =0
for any (x,y)e X,x X,, which implies, by Theorem 2 while h = 0,
that the quadratic form ®TQx is bounded from above on the set X. This
completes the proof.

The following corollary is an immediate consequence of Theorems 3
and 4:

COROLLARY 4. The function G(x) is bounded from above on the set
of feasible solutions of problem NQP if and only if

max{h"x |xecX}< +o0 and 8;< +oo for all je{1,...,n}.

In our further description we use the notation introduced in [3].

Let a = {j;,...,jiy = {1,...,m»} and & = {1,...,n}—a denote the
Sets of indices of basic and nonbasic variables, respectively, which corre-
Spond to the basis 4, = [4y,, ..., 4,;] constructed from linearly inde-
Pendent columns of the matrix 4 spanning R*. Similarly, @, and x,; denote
the subvectors of the vector ® consisting of coordinates with indices
belonging to the sets a and £, respectively, and A, denotes the submatrix
of 4 formed from the columns of A with indices belonging to the set &.

Let x® denote the basic feasible solution corresponding to the basis
4, (i.e. X = 0). Then the function 4(x) = G(x)—G(x°) is of the form

(2.2) A(x) = 2pf x+x; Vg,
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where

1 T a T 1 T.,..a
(2.3) P =75 h:+Q: x" + E; ‘z‘ha+Qa-’B )
(2.4) Ve = B (QuaBr—Que) —Qea B+ Qe

and B, = A;'A, (see [3]).

Remark 2. The matrix V. is nonnegative definite since ¢ is non-
negative definite. Moreover, if the quadratic form ®*Qx is bounded from
above on the set X, then the quadratic form x} V,a, is also bounded
from above on X.

Remark 3. Analogously to Remark 3 from [3], a point x*e X
is an optimal solution of problem NQP if and only if max{4(x) | ® € X}
= 0.

Due to Corollary 4, the boundedness of the function G(x) can be
examined before an optimal solution is sought. Therefore, in the remainder
of this section we assume that the function G(x) is bounded from above
on the set X.

Let & = {je&| Ey;<0}.

PrOPOSITION 1. If the function G(®) is bounded from above on the
set X, then Vi = 0 and p; < 0 for all j € &°.

Proof. Suppose that V> 0 or p, > 0 for some je & and con-
sider the points a(1) defined by x(1) = A®, where ¥, = —E, z; = 1,
Xy =0, 1>0.

From formula (2.2) for £*+(4) € X we obtain

A(x*+x(2) = p;A+AV;y; >0  whenever 1> 0.

Hence
lim 4(x°+®(4)) = + oo.
A—>+00
This contradicts the assumption that G(x) is bounded from above

on the set X.
Let us denote (as in [3]) by a’ the set of indices of basic variables

such that a’—a = {j}, where je £—§&°% and introduce the following
values:

(2.5) v; = min{z}[Bqy, | Bayy > 0, L€ a}.

Then the basic feasible solution x* adjacent to the basic feasible
solution a” is defined by

(2.6) w;' = ‘Vj, wg’_{j} = 0, wz’ = mz—V"E{J}.
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PROPOSITION 2. If p; >0 for some je &—¢&°, then G(x¥)> G(x°).
Moreover, if ®* is nondegenerate, then G(x*) > G(x*).

Proof. Let us notice that G(x°) = F(x°, °) and G(x%) = F(x*, x%).
From Proposition 2 in [3] we get F(x*, x°) < F(x*, %) and from Propo-
sition 3 in [3] we obtain F(x*, %) < F(x*, *). Thus the proposition
is proved.

PrOPOSITION 3. If 2p;+4v;Viyy;,> 0 holds for some je &— & then
G(x*) > G(x°) whenever v; > 0.

Proof. The proposition follows from the simple observation that
A(x*) = 2p,;v;+v; Vi3, ond from Remark 2 in [3].

THEOREM 5. If the point x° € X is a basic optimal solution of problem
NQP, then the following conditions hold:

(2.7) P:<0,
(2.8) 2p] + 'Vj V{’}{J} < 0 fOT all j € E— 50’
(2.9) V(’}{j} = O f07’ all j € 50.

The theorem results directly from Propositions 1, 2 and 3.

COROLLARY 5. If for the basic feasible solution x® condition (2.7) holds
and Vi = 0 for all j € & then x° is an optimal solution of problem NQP.

Proof. Due to Lemma 1 the equalities Vi, = 0 for all j € & imply
Ve = [0]. Thus, if p, <0, then A(x) <0 for any ® e X, which by Re-
mark 3 completes the proof.

In order to state sufficient conditions for optimality we introduce
the vector z; whose coordinates are defined by

where V,;, denotes the j-th row of the matrix V,,.
Let us also define a function g by

(2.11) g(®) = (2p+2,)" ;.

It should be stressed that, in contrast to problem BLP, the existence
of values 2; defined by (2.10) is a consequence of the boundedness of G(x)
on the set X. This fact follows from Corollary 4 and Remark 2. It can be
easily proved that 2; > 0 for all j € § and 4(x) < g(x) for € X. However,
it should be emphasized that the function g(x) defined by (2.11) may be
unbounded from above on the set X even in the case where an optimal
solution of problem NQP exists (i.e. if the function 4(x)and also G(x)
are bounded from above on X). This is clarified by the following example:

10 — Zastos. Mat. 17.3
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Example 1. Let us consider problem (1.1)-(1.2) in which h = 0 e R%,
c=1[1 17% and

1 =10 0

-1 100 1 -11 0

¢ 0 000’A=[—1 101]
0 00 0

Let us notice that the set of feasible solutions of the problem can be
expressed as follows:

X = {w ER4 lwl‘_mz'l‘ma = 1’ —$1+w2+.’,v4 = 1’ 1?20}.
Taking then a = {3, 4} and & = {1, 2} we have

0 1 -1 0 0
. o -1 1 1o o 10
X = 17 QS_ 0 0 ’ Qa_‘ 0 07 EE'__O 1_’
1 0 0 0 0

0 0 1 -1 [0 0]
Qaa - [O 0]7 QEE - [_1 1] a’nd Qa& = QEu = -0 O_'
Thus from (2.3) we get the vector p. = [0 0]T and from (2.4)
we obtain the matrix
1 -1
Veg - [_1 1].

It is easy to verify that ] V.ax, = (#,—,)?> 0 for each x e X.
Then the matrix V,. and also (due to Remark 2) the matrix @ are nonnega-
tive definite.

Obviously, max{pfx, | x e X} = 0.

Applying the simplex method we obtain (according to formula (2.10))
the following values:

2, = max{—a,+ 2, | e X} =1< 4 o0.

Thus, due to Corollary 4 and Remark 2, the functions 4 () and also
G(x) are bounded from above on the set X. But, according to for-
mula (2.11), g(®) = 2, +2, and max{x,+z, | ® € X} = + oo although an
optimal solution of the considered problem exists.

Let X* denote the sequence of all vertices of X ordered in such a man-
ner that g(x‘) > g(x’) whenever ¢ <j for &', /€ X*, obtained by the
algorithm from [7] (or [4] whenever max{g(®) | ® € X} = + o).
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THEOREM 6. The basic feasible solution = is optimal if at least one
of the following conditions holds:

(2.12) 2p.+2.<0;
(2.13)  the sequence x', ..., x" € X* satisfies g(x’) <0 and
max{4(x) | x € {x, ..., '}} <O.

Proof. From (2.10), (2.11) and from 4(x) < g(x) we obtain A4(x)
< g(®) < 0 for any ® € X, which proves the sufficiency of (2.12) (compare
with Remark 3).

Since 4(x) < g(x) for any ® € X and g(x") < 0, we have 4(x) < 0 for
xeX*—{x,...,2~"}. From (2.13) we get also 4 (x)< O for x® e {x*, ..., x"'}.
Therefore, 4(x) <0 for any « e X, which, by Remark 3, proves the
sufficiency of (2.13). This completes the proof.

3. An algorithm for solving the problem NQP. The results obtained
in Section 2 enable us to propose an algorithm for finding an optimal
solution of problem NQP.

The algorithm presented in this paper consists of two distinct parts.
In Steps 1 and 2 the boundedness of the function G (x) is examined ac-
cording to Corollary 4.

In the second part (Steps 3-9) an optimal solution is sought knowing
that the function G(x) is bounded from above on the set X. It should
be stressed that according to Proposition 1 further computations may
be restricted to the set &— &£°.

In Steps 4-6 the conditions of Theorem 5 and Corollary 5 are used
while the conditions of Theorem 6 are verified in Steps 7-9.

In Step 7 it may be necessary to use the method from [4] for maxi-
mizing a linear form over a convex hull of vertices of the set X while
in Step 9 we must apply the method from [7] for ranking vertices of a con-
vex polyhedral set in a sequence for which the values of a linear form do
not increase (or the more general method from [4]).

All other steps utilize standard linear programming procedures.

It should be stressed that any method working under the assumption
of the existence of an optimal solution of problem NQP may be used instead
of the second part of our algorithm.

The algorithm

Step 1. Find hy, = max{h™x |x e X}. If hy< + oo, go to Step 2.
Otherwise, the function G(x) is unbounded from above on the set X.

Step 2. Find s; for je{je{l,...,n}|q; >0} defined by (2.1).
If 5; < +o00 for all j, go to Step 3. Otherwise, the function G(x) is un-
bounded from above on X.
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Step 3. Find () a basic feasible solution x° € X.

Step 4. Compute the vector p, according to (2.3). If (2.7) holds, go
to Step 5. Otherwise, pick j € & — £° such that p, = max{p, > 0 |l e §— £,
compute »; according to (2.5), replace &* by a* obtained from (2.6)
and repeat Step 4.

Step 5. Compute the matrix Vg according to (2.4). If Vi, =0
for all j € £ — &9, then & is an optimal solution of problem NQP. Otherwise,
select the set &' = {je &—&°| Vi > 0}.

Step 6. Compute the values »; for j € £* according to (2.5). If condi-
tions (2.8) hold, go to Step 7. Otherwise, pick j € &' such that 2p;+v; Vi,
> 0, replace & by * obtained from (2.6) and return to Step 4.

Step 7. Find the values z; for j € £ according to (2.10). If conditions
(2.12) hold for all j € &, then x* is an optimal solution of problem NQP.
Otherwise, find the vertex a! e X* maximizing the function g(x) (defined
by (2.11)) on the set X,.

Step 8. If g(x') > 0, go to Step 9. Otherwise, &* is an optimal solu-
tion of problem NQP.

Step 9. Compute A(x!). If A(x')<0, find the vertex x?e X"
which follows directly x!, replace ! by a2 and return to Step 8. Otherwise,
replace x* by a! and return to Step 4.

Remark 4. Since the number of vertices of the set X is finite and
the algorithm does not generate new vertices, it terminates in a finite
number of iterations yielding an optimal solution of problem NQP.
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1. CZOCHRALSKA (Warszawa)

METODA PROGRAMO WANIA BILINIOWEGO
W NIEWYPUKLYM PROGRAMOWANIU KWADRATOWYM

STRESZCZENIE

W pracy rozpatruje si¢ problem maksymalizacji wypuklej funkeji kwadratowej
na wielodciennym zbiorze wypuklym (nickoniecznie ograniczonym).

Problem ten nalezy do klagsy wieloekstremalnych zagadnieri programowania
matematycznego, a jego maksima lokalne (i w zwiazku z tym réwniez rozwigzanie
optymalne) znajdujg si¢ w wierzchotkach zbioru rozwigzan dopuszczalnych, co wynika
z wypuklodei funkeji celu.

Niezaleznic od zwigzk6w z problemem programowania biliniowego sformulowano
warunki konieczne i dostateczne istnienia rozwigzania optymalnego w rozpatrywanym
problemie, ktoérych sprawdzenie wymaga jedynie rozwigzania probleméw progra-
mowania liniowego.

Opierajac sie na uzyskanych wynikach, opisano algorytm rozwiazujacy rozwa-
Zany problem.



