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GEOMETRIC STRUCTURE OF POSITIVE BASES |
IN LINEAR SPACES |

1. Introduction. A set A — L positively spans a real linear space L if each
element of L can be represented as a linear combination of elements of A
with positive coefficients. The minimal set which posmvely spans a space Lis"
called a positive basis of ‘L (cf. [1], [4], [73-[9)). It is well known ([2], [3],
[51, [6], [8], [10]) that if B is a positive basis of a ﬁmte-dlmensmnal
Space L, then

(1) .~ 14dimL<cardB<2dimL,

and for each integer k, 14+dim L < k < 2dim L, there exists a positive basis B
of L such that card B = k. Moreover, if card B = 1+dim L, then B is the set
of vertices of a simplex containing in its interior the origin. This basis is
called a simplicial basis. On the other hand, if card B = 2dim L, then

B=B,UB,,
Wwhere
By = {by, b,, ..., b,}
is a linear basis of L, and
B, = {ﬁl by, B2 bz,- ees ﬁubn}a
p;i<0,i=1,2,....,n, n=dimL.

In this case, B is the so-called maximal basis of L. In the general case,
however, the geometric structure of positive bases is not uniquely determined
and its description is a rather complicated problem.

The purpose of this paper is to prove a theorem on decomposition of
Positive bases into the union of disjoint simplices. Such a representation
elucidates entirely the geometric structure of positive bases. Moreover, it
8ives immediately the evaluation (1). Note that this theorem is essentially
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stronger than the one formulated in [8]. Additionally, there is given a

characterization of the subsets of L, which can be extended to positive bases
in L. :

Let us ﬁrst establish the notation and give the indispensable deﬁmtlons
We denote by L* the space of linear functionals defined on L (we assume
that dim L < o0). For any subset 4 of L we denote by lin A (pos A) the set of
all linear combinations of elements of A with real (nonnegatxve) coefficients.
The set pos 4 is a convex cone with vertex at the ongm A set A is linearly
(positively) independent if |

lin(4\{a}) # lin4 (pos(4\{a}) ;éposA) for every ac A.

Note that B is a positive basis of L iff B positively spans L, and B is
positively independent. By aff 4 we denote a carrying flat of the set A:

= {x: x.--‘iZ “ a4, qed, ¥ o=1}
or

aff A =lin(4\{a})+a, aecA.

The simplex is any set of affinely independent elements of L ie., the set D
such that

aff(D\{d}) # affD for every deD.

By convA4, A <L, we denote the cOn{rex hull of A. We write f(A4)= =0
(f(A)>0), fel*, AcL, if f(x) =0 (f(x) > 0) for every xe A. For fel”
f #0, we adopt the following notation:

H, = {xeL:f(x)=0},
={xeL: f(x)>0} and H; ={xeL: f(x) <'0}

Let S be a convex set in L. We denote by relint S (int S) the set of points
x, xe§, such that

VyeS 3¢ >0 (x+§:(x-—y)eS)
(Vye'L 3e > 0 (x+&(x—y)eS)).
If dimS = dim L (dim S = dim aff S), then clearly
relint § = int S.

‘Note that relintS (relative interior of §) is an:algebraic notion. If L i,
however, a linear topological space, then relint S is the interior of S in the
induced topology in the carrying flat of S.

A lincar combination of elements of A (4 is a finite subset of L) will be
denoted by #(A4) and, if all coefficients of .#(A4) are positive, by £ (A}
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In this paper we use the following properties of pos A and relint pos 4:

LeMMA 1. An element x belongs to relintpos A iff for every finite set
M < A there exists My, M = M, < A, such that x =L (My).

By this lemma we have |
2) xerelint pos 4, ye posA=x+ryerelint pos 4,
3) - xerelint pos 4, 4 > 0= Axerelint pos A.

LemMma 2. If A# @ and B # @, then
4) pos(AUB) =posA+posB,
(5) relint pos (A4 U B). = relint pos A +relint pos B.
Proof The property (4) is ewdcnt In order to prove (5) it is sufficient
to show that
relint pos(Au B) < relint pos A + relint pos B,
because the converse inclusion follows immediately from Lemma 1.

Let xerelint pos(4 U B). Since 4 # @, there exists yerelint pos A. Clear-
ly, ye pos(4 u B). For a certain ¢ > 0 we have

z = x+&(x—y)epos(A4 -UB),]‘ |
and hence |

X=y,+2z,, yerelintposA4, z,epos(4u B).

' Therefore, by (4) and (2), -

X=y, -i-zz, yaerelint pos 4, z;€pos B.
Analogously, | |

X = y3+23, y;épps A, z;erelint pos B,
and hence | - ‘

x =402+ 2)+3 (s +29) = Y+ zas

Where by virtue of (2) and 3),

‘yscrelintposA and  z,erelint pos B,
Which completes the proof.

- 2. Simplicial decomposition of a positivé basis. A set A & L is called a
Positive basis of L with respect to a subspace E (w.r.t. E) if

pos(A v E) =
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and for each ae A4
pos((4\{a}) UE) # L.
The positive basis of L wr.t. E = {0} is the positive basis of L.

Lemma 3. Let E be a proper subspace of L. The following conditions are
equivalent:

(i) pos(AVE)=L;
(i) Oeintconv(4 U E);
(iii) for each feL* f #0, and E « H;, we have
Hf nA#Q.

Proof. (i) = (ii). Let ye L. From (i) it follows that

k
—y=u+) Aa, ucE, >0, gqeA.
1 .
Taking
k
’ A=
1+2 . i=21}vi

we obtain

—ey = Z o Aa,econv(AuE),

1+ﬂ~

and therefore Oeintconv(4 u E).

(i) = (iii). Let us suppose that Hf n A = @ for a certain feL*, f # 0,
E c H,. Then
(6) Hf nconv(AUVE) = Q.

On the other hand, if (ii) holds, then for ye H; there exists ¢ > 0 such that
—eyeconv(A U E) and —eye Hf, which contradicts (6).

(iii) = (i). Let us assume that pos(AUE) # L. Since pos(AUE) is 2
convex cone with the vertex at the origin, by virtue of the Support Theorem
there exists feL*, f # 0, such that

pos(AUVE) = Hf UH,.

In this case, E = H; and Hf N A =@, which contradicts (iii).
Now we notice some evident properties of positive bases and positive

bases wr.t. E. In the sequel, we restrict our considerations to the nontrivial
case where dimE < dim L.

STATEMENT 1. If B is a positive basis of L wr.t. E, then the set
B* = {b*: b* =b+u,, beB, u,cE)}

is also a positive basis of L wr.t. E and card B* = card B.
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STATEMENT 2. Let L= L;+L,, Ly nL, = {0}, and let B, be the orthogo-
hal projection of B onto L,. Then the set B is a positive basis of L wr.t. L, iff
B, is a positive basis of L,.

STATEMENT 3. If B is a_positive basis of L wr.t. E, then BNE = Q but
E nrelintconv B # Q.

A subset B; of a positive basis B is called a subbasis of B if it is a
Positive basis of the subspace linB;. If B, ;é B, then B, is called a proper
subbasis of B.

STATEMENT 4. If B is a positive bas:s of L and a set B, < B positively
Spans a subspace L,, then B, is a positive basis of L,, By = L, "B, and B\B,
is a positive basis of L wrt. L,.

Let B be a positive basis of L. We say that C < L is a critical set of B if
pos ((B\{b}) v C) # L for each be B. Elements of C are called critical vectors
of B.

Note that each subset of a critical set is also a critical one. Moreover,
the origin is a critical vector for every positive basis. Let us notice some
evident properties of critical sets of positive bases.

STATEMENT 5. Let B be a positive basis of L. The following conditions are
equivalent :

(i) C is a critical set for B,

(i) VbeB 3fel* f#0 (f ((B\{b})uC) 0);

(iii) VbeB (—posC nintpos(B\{b}) = @); -

" (iv) Vbe B (—pos C nint pos((B\{b}) L C) = @):

(v) —posC < L\ U int pos (B\ {b}); :

(vi) —posC < L\ U int pos((B\{b}) v C).

STATEMENT 6. If C IS a critical set of a positive baszs B, then pos C and
clC are also critical sets of B.

STATEMENT 7. If each element of a convex set C is a critical vector of a
Positive basis B, then C is a critical set of this basis.

Let C(B) denote the set of all critical vectors of a positive basis B of a
space L According to Statement 5 (v) we obtain

) | ~C(B) = L\bUB int pos (B\ {b}).

In the particular case where B = {by, b,, ..., b,} is a simplicial basis of
L, n=dimL > 2, we have

C(B) = — U pos(B\ {b;, b;})-

i#j
For the maximal basis
(8) C(B) = {0}.
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Note that if B={by, by, ..., by} is a positive basis of L, then
B* = {,b,, B2b,, ..., Bubn}, Bi>0, is also a positive basis of L and
C(BH=C(B). |

STATEMENT 8. Let B, be a positive basis of L w.r.t. a subspace L, and let
B, be a positive basis of L,. Then the set B = B, U B, is a positive basis of L
iff C =posB, nposB, is a critical set of B,.

Proof. Suppose that B=B,uB, is a posmve basxs of L If
pos((B,;\{b})u C) = L, for a certain beB, then, using B, nB, =@, the
evident equality pos (MuC)=posM for C = posM and (4), we obtain a
contradlctlon '

pos(B\{b}) = pos((B,\{b)u€CUB,) =L,
Now, let C be a critical set of B, and let
pos(B\{b}) = L
t'or a certam beB. Note that be B,, because
| ' pos (L U(By\{b}) #L for beB,.

Since L, = pos(B\{b}), each xeL; can be represented as £* (Ml)
+ £ (M,), where M, < B, \{b}, M, < B, and £t (M,)eC. In this way we
get

pos((B\ (b)) u C) = L,

which contradlcts the definition of C.

STATEMENT 9. Every positive basis different from a simplicial one contains
a proper subbasis. If B, is a maximal proper subbaszs of B, then the set B\B;
is a simplex and

lin By nrelint conv(B\B,) = {c},

where c is a critical vector of B,.
Proof. Since OeintconvB {Lemma 3), there exists a simplex D < B
such that Oerelintconv D. Since B is not a simplicial basis, the set D is a

proper subbasis of B.
Let B, be a maximal proper subbasis of B and let

Ll = lin B; = pos B,.

Slnce B\Bl is a posmve basns of the space lin B wur.t. Ll, we have
L, A relint conv(B\B,) # Q.

We will show that this intersection is a one-element set and that the set
B\B; is a simplex. Otherwise, there would exist a simplex 4 = B\B;,
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4 # B\B,, such that
‘ L, nrelintconv4 # Q.
Let 4 be a minimal simplex with this property. Hence
L, nrelintconv 4 = {c}

and 1t is ev1dent that 4 is a positive basis of the space lin (Lyu 4) w:t L,.
Therefore the set B; u 4 is a proper subbasis of B which contains B, as a
proper subset. This fact leads to a contradiction with the definition of B,.

Thus we have shown that B\B; is a simplex and the set
relint conv(B\B,) cuts L, at the unique point ¢. From Statement 8 it follows
directly that c¢ is a critical vector of B;, and the proof is completed

Now, let B= B, U(B\B;) be a decomposmon of the basrs B of the
Space L given by Statement 9. Takmg

L1 = posBl, Ae} = L1 nrehntconv(B\Bl)
= (B\B,)—c¢, L,=aff4,

we obtain a decomposition of the space L into the direct sum a subspace L,
and L,, and a decomposition of the basis B into the union B; u(4+c¢),
where B, is a positive basis of Lj, 4is a s1mphc1al basis of L,, and c is a
Critical vector of B,. '

Note that if L = L, + L,, L, n L, = {0}, B, is a positive basis of L,, 4 is
a simplicial basis of L, and c is a critical vector of By, then B; U(4+c) is a
Positive basis of L. Hence, using also Statement 9, we obtain

THEOREM 1. The set B L is a posztwe basis of L iff B is a simplicial
basis of L or B admits the partition

B=A4,u(d;+c)u...u(d,+c,-y),

Where A, ..., 4, are simplicial bases of subspaces Ly, ..., L,, L= L, + ... +L,,
LnL,={0} for i#j, dmL; 21, and ¢; (=1,2,...,r—1) are critical
bectors of bases B; of the spaces Ly+ ...+L;, where

Bl ¢41 and Bj=A1 U(42+C1)U...U(AJ'+C1_1) .

fo" j= ,r(r=2). o

Thrs theorem characterizes completely the gcometrlc structure of posi-
tive bases and provides a method for constructing positive bases in a given
linear space.

Let us remark that if

dimL=n, dmL =k, i=12,...,r
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(i.e, card 4; = k; + 1), then by v1rtue of the obvious equality k,+ ... +k, =
we obtain
n+i1<cardB=n+r<2n,

because 1 <r <

The equality card B=n+1 takes place only for r =1, ie, if B is a
simplicial basis. If card B=2n, then r=n and k;=1 for i=1,2,...,n
Moreover, by (8) we obtain ¢; =0 for j=1, 2, ..., n—1. Hence in the case
card B = 2n the basis B has to be of the form

{Byy ..., By Bys1s -ney band,

where b,,; = Bib;, f; <0,i=1,2,...,n and {b,, ..., b,} is a linear basis of
the space L. '

3. Condition for extension of the set to a positive basis. It is well known
that every linearly independent subset of the space L can be extended to a
basis of L. The analogous property for positively independent sets is not so
evident. This is easy to see if one considers in R® the set of vertices of a
regular pentagon whose carrying plane does not contain the origin.

In this section we formulate necessary and sufficient conditions for the
extension of a set to a positive basis in L. Let A be an arbitrary subset of L
and , ' :

Q(A) = relint pos A\ |J relint pos(A4\{a}).
acd

It is easy to see that if A is a positive basis of L, then —Q(A) is the set of
critical vectors of A; thus 0e Q(4). We will show that A admits an extension
to a positive basis iff Q(4) # Q.

First, let us show a few simple statements.

STATEMENT 10. If Q(A) # @, then for an arbitrary nonempty subset B of A
we have also Q(B) # Q.

Proof. Suppose that for a certain set B< A, B# A, B # (3, we have
Q(B) = @. Then

9) . relint pos B = |J relint pos(B\ {b}).

beB

Let xerelint A. Then, by Lemma 2,
x =y+z, yerelintposB, zerelint pos(A4\B),

and by virtue of (9) there exists be B such that
_yerelint pos(B \{b})

Let M be a finite subset of A\{b} and let M, = MnB, M, = M\M, . Then,
using Lemma 1 we have ' .

y=%*(M;UN,)), N, cB\{b},
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as well as
z=%*(M,UN,;), N,cA\B,
and hence
x=%"(MUN), where Nc A\{b}.
Taking into account again Lemma 1 we obtain
xerelint pos (4\ {b}).

Due to the arbitrariness of the choice of x we have Q(A4) =@, which
Contradicts the assumption.

STaTEMENT 11. If Q(A) # @, then the set A is p_()sitively independent.

4 In order to show this statement it is sufficient to notice that if pos 4
= pos(A\{a}) for a certain ae A, then

| relint pos A = relint pos (A4 \{d}),
which gives Q(4)'= Q.
STATEMENT 12. perelint pos A iff
Oe relint-pos(4 L l{— p}).

StaTeEMENT 13. lin A = pos A iff Ocrelint pos A.

Proof, It is sufficient to notice that if xelin4 and x = Z(P), PcA,
then in virtue of Ocrelint pos 4 and Lemma 1 there exists a subset N of A
Such that

0=2"(PUMUN),
Where M is an arbitrary subset of A. Thus
x=t#" (PUMUN)+Z(P) =L (PUMUN)
Provided that t is a sufficiently large positive number.
StaTEMENT 14. If .
OcrelintposA and Oecrelint pos(4)\ {d})
Jor a certain ac A, then Q(A) = O.

Proof It follows from the assumption that for an arbitrary set
M < A\{a} we have

0=2*MuUla)UN,), N, cA\{a},
and '

0=$+(MUN1UN2): NZCA\{a}.
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Thus .
a=tL*(MUN;UN)~L* (MUN,) = L*(MUN,;UN,),
N,UN, < A\{a},
provided that t is a sufﬁciently large positive number. This means that
| aerelint pos (A\{a}), -
and hence aepos(A4\{a}). The equality Q(4).=Q fOllows now immediately
from' Statement 11.

STATEMENT 15. A set A is a positive basis of lin A iff OeQ(A)

Proof. If A is a positive basis, then, according to the previous consider-
ations, 0e Q(A4). If 0 Q(A4), then Ocrelint pos 4 but 0¢relint pos(4\{a}) for
each ae 4. By" Statement 13 we have lin4 = pos A as well as -

lin A # pos(A\{a}) for each ae A.

Thus A4 is a positive basis of lin A.
StaTEMENT 16. If 0¢Q(A), then peQ(A) iff

(10) | ~ 0eQ(au{-p)).
Proof. If peQ(A), then clearly
perelintpos4 and  pérelint pos(4 \{a})

for each ae A. Hence, by virtue of Statement 12, we have _
Oerelintpos(Au {—p}) and O¢reiint pos{(4\{a})u {—p})

for each ae A. Moreover, since 0¢0(A4) and Q(A) # @, we have also (cf.
Statement 13) O¢relint pos A. Hence we obtain (10).

Assume now that (10) holds. Clearly, ~p¢ A. By virtue of Statement 12
we have

perelintposA and pérelint pos(4\{a}) for each ac A,

_which gives us peQ(A4).

THEOREM 2. A nonempty set A < L can be extended to a positive basis of
a space L iff Q(A4) # Q. '

Proof. If A is a subset of a posmve basis B, then Q(B) #Q (cf
Statement 15), and hence Q(4) # @ (by Statement 10). Let now Q(A) # @. It
is sufficient to show that 4 admits an extension to a positive basis of lin 4. If
0eQ(A), then by Statement 15 the set A is a positive basis of linA4. If
0¢ Q(A), then there exists pe Q(A4), p # 0, such that the set B, = Au {—p} is
a positive basis of linA4 = pos B, (cf. Statement 16), which completes the
proof. '
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Remark 1. If Q(A4) # @ and A4 is a subset of an n-dimensional space,
then card 4 < 2n. S

Remark 2. If 0¢Q(A), ie, A is not a positive basis of lin 4, then
Au{—-pl is a positive basis of hnA iff peQ(A).
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