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ON POLYHEDRAL GAMES

0. Introduction. We call the triplet (&,, &,, C) a polyhedral game
(PG), where &, = {z|zA4,> a,} and &, = {y|4,y < a,} are non-void
polyhedral sets in the Euclidean spaces R™ and R", respectively, and
where C is a matrix of size m X n.

Let us define

v, =s8up inf #Cy and 9o, = inf sup 2Cy.
Ay o & Ay

Using similar arguments as in the case of common matrix games,
it is easy to see (cf. [4]) that v, is the optimal value of the following linear
programming (LP) problem (the LP-problem related to the maximizing
player):

V'i: _Z(E"'Oyk)lk—z (EiC§l)”l+v < 0 \
2 1
V;: -—Z (E,-ng)lk—z @7‘071)‘“1 <0 } v - max,
* 1
D=1 )
k
Ay =0,

where z;, z; and ¥, ¥, are the extremal elements of /i, /7 and /7,
5, respectively, i.e. the extremal elements of the components in the
canonical decomposition of <7, and </, (c¢f. [1]). The LP-problem related
in a similar manner to the other player is a dual of the above one. So,
applying the duality theorem, we have one of the following possibilities:

(0.1) —oo L ¥y = V< 00,
(0.2) —o00 = v, = V,,
(0-3) ’01 = ’vz = +OO,

(0.4) —00 = ;, 93 = 400,
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The algorithm to be presented in Section 1 is essentially the building
up and the solution of the above LP-problem. Section 2 consists of some
remarks on the algorithm and in Section 3 we give two possibilities of
reducing an LP-problem to the solution of a PG. These give two decom-
position procedures for LP-problems. The detailed discussion of the
computational aspects of these procedures and some experience will be
given in another paper.

From the formulation it is always clear which symbol is a row or
a column vector, which one is a scalar, efe.

1. The algorithm.
1.1. Let &, e/{ be an arbitrary extremal element and let ¢ = 1.

1.2, Let us suppose the extremal elements Tyy By oeny By_g ey and
By, @yy ...y Byedy to be known and let us consider the following LP-
-problem:

—7,0y <0 > » — max

'—'=el Oy < 0
A,y < ay

/

If this problem has no solution, the procedure is completed and we
have case (0.2) or case (0.4). If this problem is not bounded, let y, be
an extremal element of <5 for which #,0y,>0,...,%,0y, >0, ..., with
at least one strict inequality, and let be v»{® = +-oco. If the problem has
a solution, let y, be an extremal solution, and let +® be the optimal
value of this program.

1.3. Let us consider the LP-problem
24, > a,} Cy, — min.

If this problem is unbounded, let v® = —oco and let z,,,e/; be
such an extremal element that z,,,Cy, < 0. Otherwise, let =,,,es}
be an extremal solution and let v be the optimal value of this program.

14. If v = 400 and v >0, the procedure is completed and
we have case (0.3) or case (0.4). If v{® = v, the procedure is completed
and we have case (0.1). Otherwise, let us make the substitutions: z,_,,,
= @y I Tyt 0T Ty, = Toy1 if @y e, and ¢ = o'+1.

Now let us continue from 1.2.

The procedure may be validated in the following way:
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Ad 1.2. If the LP-problem in 1.2 has no feasible solution, then for
any yesf, we have z;0y < 0 for some 1 <j< g— o'. So
infxCy = —oco for any yesf,, i6. v; = —oo.
1
Ad 1.4. If > 0, then for any zeo/, we have z(y, > 0. From
v® = oo it follows that y,es5, thus

sup 20y = +oo for any wes,, i.e. v, = J oo,
Ay

If v =9, let & = tX, where the matrix X is composed from
the row-vectors ,,...,%,_,, ®,..., %, and where ¢ is the optimal so-
lution of the dual of the LP-problem in 1.2 (which now exists), and let
Yy = y,. Then from 1.3 we have

minzCy = v
)

and from the duality theorem we obtain
" 50§ = o,
and, for any yesol,, 20y < 99, ie.

maxzCy = v{®.
Ay
Since the number of extremal elements of 2/, and &, is finite and
a repeated appearance of any extremal elements is followed by such
a case where the procedure is completed, the procedure is finite.

2. Some remarks.

2.1. Obviously,
@ > o t) > > 0, > 0,

2.2. If we introduce a more sophisticated rule for the selection of
Z,,, in 1.3, passing to step o+ 1 of the iteration procedure, we may drop
all the constraints of the LP-problem in 1.2 which were not binding
ones in step o (if there were any).

2.3. If we do not assume &/, or &, to be non-void, then applying
the usual definition there is a further possibility: », = + oo and v, = —oo.
In this case one has to substitute 1.1 by solving an LP-problem to obtain z,,
and if the LP-problems in 1.2 and 1,3 have no solutions, the possibility
introduced just now may also be valid.

24. One may modify the above algorithm in the following way.
If v® < 400, then let z,., be such an extremal element for which
T 110y, < o\ (if it exists) and v = x,,,0y,.
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2.5. Passing to step o+ 1, one may add to the LP-problem in 1. 2
the constraint (besides that one corresponding to z,,,) —2Cy+v <
where e/, is arbitrary (or other constraints of this type).

3. Reducing a large scale LP-problem to solving a PG. Let us consider

the LP-problem
sup(cx|Az = b, 2> 0).

A =[A, 45 ..., Ax], ¢ = [€1) 03y ...y x], a0nd @ = [2y, 25, ..., Zx]
is a partition of the parameters and variables of the LP-problem, then

sup(cx|Az = b, x > 0) = sup (2 ¢;%; | & =0b, Viig, > 0)

= Sup (Z sup(c;o;|4;2; = b;, x; > 0) lzbi = b)
7 i

= sup memb |p: 4,

2 ={b= (...,b,-,...)}Zb,- = b}

={p=(..,ps...)[Vi: p;4; > ¢;}.

This way of reduction of an LP-problem to a PG is due to Liptak
[2]. The procedure suggested by him for solving this PG is based on the
so-called fictitious playing [3]. We may briefly compare this method
and our algorithm which can be obtained by applying the procedure
of Section 2. Although in our case one has to solve “coordinating problems”
(cf. [2]) of larger size, this procedure is finite, which is a very definite
advantage because of the rather slow convergence of fictitious playing.

Another possible reduction which may be more advantageous, depend-
ing on the structure of matrix 4, is the following.

Let A =[4,,4,], ¢ =[¢,c¢,] and z = [#,,2,] be a partition of
the parameters and variables. Then we have

where

and

sup(cx|Ax = b, x > 0) = sup (e, 2, + @5 |4 2, + A0y = b, 2,, , > 0)
= 8Up (¢, 2,4 SuP (63 %3 |42, = b— A, 21, ®, > 0)| @, > 0)
= sup(clwl—}—mf(p(b—Alwl)]pAa/ eq)| @, > ) = supmpra:,

where % = {# = (2,,0)| #, > 0}, # = {p = (p, )IpA ¢y} and

0 ¢
C = .
[b — Al]
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For example in the case

2 is the Cartesian product of polyhedral sets of smaller size.
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0 GRACH WIELOSCIENNYCH

STRESZCZENIE

Nota podaje zwiazek gier wieloSciennych (polyhedral games) z programami
liniowymi. Proponuje si¢ pewien algorytm rozwigzywania tych gier i poréwnuje
Z podobnym algorytmem, podanym przez Liptika [2]. Nota ma charakter teoretyczny
i nie zawiera wynikéw praktycznych stosowania proponowanego algorytmu.



