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1. Introduction. Galerkin approximations of initial-boundary value
Problems for parabolic equations of second otder have been studied by many
Authors (see [3] and [7]-[9], where other references are given). However, as
ar as we know, only the case of a constant domain was considered. The aim
:’f the present paper is to study the case where the domain is varying in
Ime,

By means of a difféomorphism -we transform our problem to an
€Quivalent one, posed in the cylindrical space-time domain and connected
With a coercive Dirichlet bilinear form. Now the: standard Galerkin
Semidiscretization leads to a system of ordinary. differential equations in time.
This system is proposed to be solved by the ('}dlerkm method as well. In this
Manner we obtain approximate solutions which are continuous (or .more
Smooth) with respect to time.

In Secfion 7 we propose another method of obtaining approximants
ontinuous in time, which in the particular case of the finite element method
s connected with the triangulation of the space-time domain. Under some
additional assumptions concerning the domain, this method was presented in
the author’s previous paper [5].

We give some estimates of the error of the proposed approximate
Methods.

2. Basic notation and assumptions. For x, ye R¥ we denote by |x| the
EuChdean norm and by <x, y) the scalar product. If x = (x,, ..., xy), then x’

=(xy, ..., xy_{):*The-derivation i§ written as f6llows.
& a 21 n
ijﬂ“é;c;a- Dx""Dxl "'Dxna
whl?l‘c o= [0yyienes az,,) (o npn-negthc integers), - |9:| =0+ ... +0%.  The

del‘lvatlve with respect to time is written as 4, or 4 in the one-dlmensmnal
Case. All the derivations are understood i m the weak (distributional) sense. All
the considered functions are real-valied..
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Let 2 — R" be an arbitrary domain. By C*(£) we mean the set of all
functions u such that u = v, veC§(R"). We put

I*llo. for the norm in L*(%Q),

(*, *)q for the scalar product in L?(Q).

Let X, (0<t<T) be a family of linear normed spaces. BY
L*(0, T; X,) we denote the set of all functions [0, T]3t — u(f)e X, such
that

T
[ Nl @iz, < co.

If X, = R", this space is denoted by L*"(0, T) and considered with the
scalar product

T
@, 0) = [ <u(0), v(0)dt
0

and the norm [jullo = (u, w)!/2. For fixed T> 0 we put 4; = Q x(0, T). Given
an (N x N)-matrix C, we put

ICl = sup |Cx] (xeRY)
Jx|=1
for.its spectral norm.

3. Some auxnhary deﬁmtlons and lemmas. For the convenience of th@

reader we gwe in thxs sectxon some deﬁnmons and lemmas used in the
sequel.

By a Sobolev space H,(Q) (k =0, 1, ...) we mean the set of all functlons
ueL? (€) such that D*u = L2(Q) for o < k. Obviously, Hy () = L*(Q). It 18,
known [1] that H,(Q) equlpped with the norm

o =( 3 1D"ull0)"
e} <k
corresponding to the inner product
(u, V)= Z (D*u, D*v),

Ja] Sk
is a Hilbert space. We need in the sequel also the seminorm

o= 3 IID"ulig,q

ol =k

Considering the one-dimensional case with Q= (0, T) we denote ‘bY
H,’:’.(O, T) the product of N :copies of H, (0, T), equipped with the norm

]y = ): IDLulid)"”.

j=0
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We put
HYN(0, T) = {ue HY(0, T): u(T) =0}

(it is known that u is a continuous vector function, so the value of u(7T) is
well defined). The closure of CZ(R) in H, (9) is denoted by H;(Q).

From now on we suppose that Q is.bounded. We say that Q has the
Segment property if there exists a finite covering 0Q <= (J U; with open sets U i
and the corresponding set of vectors ;€ R" such that (2 U )+ < Q for
¢ach j and te(0, 1). It is obvious that A, has the segment property if Q has
this property. In the sequel ¢, denotes a positive constant which may depend
on T

Lemma 1. If Q has the segment property, then the set C*(Q) is dense in
H, (9). '

The proof may be found in [1]. Using quite similar arguments one may
Prove a-little more general lemma:

Lemma 2. Suppose that

(1)  has the segment property,

(i) D*ue L2(Q) for o belonging to a finite set A of multi-indices.

Then there is a sequence |p,) = C&(R™ such that

lim D*¢,=D"u in L*(Q) for acA.

LEmMMA 3. Suppose that Q has the segment property. Then for each fixed
t€[0, T] there exists a linear continuous mapping S: Hy (A7) +>L*(Q) such
that Su = u(-, 1) for ue C*(R™).

Proof. We suppose 1 < T the case 1 = T may be treated similarly. Let
?€C*(R), = 0 in a neighbourhood of T, and ¢ = 1 in a neighbourhood of
T. Then for ue C*(R"*!) we have
T

." D,((Pu)dt = _u(y: T).:

T

S0
T
lu(y, o> < T | |D,(ou)|* dt,
0

and therefore .
{ lu(y, DI*dy <crllull}, 4 -
2

This means that S is continuous when considered on the set C®(4;) which is
nse. in H,(4;) by Lemma 1. Thus our assertion follows.

In the sequel we write u(-, 7) instead of Su. Each function u(x, t) ‘may

. Considered as a vector-valued mapping tu(-, 1). If ue L*(0, T H, (%)),

€N it is in L2(4;), and one may consider its distributional derivative u,.
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Lemma 4. Let Q have the segment property and let u, u,e L*(0, T: H,(£2)).
Then

T T
(1) OsuPT e, S)”t%.r)?S’CT(HI'“( s Dl odt +'... llu, (-, DIIE odt).
Ss<T 0. 0
Proof. By Lemma 2 it is sufficient to prove (1) for smooth u. For
0Lt <s< T we have

u(x, s)=u(x, t)+ i u,(x, tydr.

Thus, applying the Schwarz inequality, we obtain

T
u(x, s\? < 2Ju(x, 12 +2T | ju.(x, 1)|*dt.
0
Integrating with respect to (x, t)ed; yields (1) for k = 0. The case of an
arbitrary k may be treated similarly with u replaced by D*u for |«| < k.
LemMMA 5. Let & be a diffeomorphism defined in a netghbourhood of Q and
let us put ¥ =@~ Then

(1) the operator ursuo¥ is a linear continuous mapping of H, (&) onto
H, (2(Q):

(1) if x = &(y), then the chain rule

"

(2) Dx_j(uo‘P) =3 .(waj YDy, wo¥ (j=1,...,n)

k=1
holds far;any ueH,(Q).

The proof of (i) may be found ‘in [1]. Part (ii) follows immediately if we
noticq that formula (2) is valid for smooth u and that any function ue H; (Q)
is a limit in the |||, ,-norm of a sequence ‘u,) < C*(Q).

LEMMA 6. Suppose ‘that” @ has the segment property. Then for any
u, te H,{44) we have

T

T
G) [ (4, 0)gdt = —'-j (u, v)gdt +(u-, 1), v(-, )iZd.

Proof. In view of Fubini’s theorem we may change the order of
integration. Then for smooth u and-» formula (3) is obtained after integrating
by parts in the interval [0, T]. For arbitrary u, ve H,(4;) we obtain (3)
passing:to the limit according to Lemmas 1 and 3.

We deal in the sequel with finite element approximations. Using the
notation of [2] we suppose that {7;} is.a family of triangulations of the
considered domain Q (which is assumed to be .a polyhedron) and that the
following conditions hold:
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(fy) the family {T,} is regular;
f2) (K, Pg, Z4) with K'e U T, is the family of finite elements of class C;

_ (f3) each (K, Pg, > ©) is’ afﬁnely equivalent - to a.pattern finite element

K, P, %)

(f4) Pr CPCHI(K);
_fs) the set ¥ is defined by mearns of the 'derivations:D* with &4 and s
15 the. maximal order .of such:a (so s =.0 in:the. case of.finite..elements of
Lagrange type).

‘We: use in the sequel the mterpolatlon theorem (see [2], Theorem 3.2.1)
in the following form:

THeorREM A. We suppose that (f,)Afs) hold and that ¢eH,.,(Q) with
r+1> n/2+s. Then

o —yolly, 0 < 1" |Gl + 1,0 ,

Where I1, denotes the interpolation operator and n is .a ‘positive constant
depending on the family !T,! and on the element (K, P, %).

4. Weak formulation of the exact problem. We suppose from now on
that Q = R” is a bounded domain having the segment property. Particularly,
£ may be a polygon for n =2, a polyhedron for n = 3 and, more generally,
any bounded domain with Llpschxtz-contmuous boundaty.

We deal in the sequel”with a family of dlﬂ'eomorphlsms F,. Putting
Fo'=Gyy and x, = F,(3, 1, y,=G,(x,1) (r=1,...,n) for x =Fy(y) we
assume the following:

(a,) there are a neighbourhood @, of € and a2 number § > 0 such that
Fo: Q,—R" is a diffcomorphism of class C? for —8 <¥'< T+3§;

(a;) Fo is the identical mapping; =

(a;) D, F,, D, D . Fr, and D, F, are continuous in Q4 x(—0, T+ ).

The Jacobl matrlx of F 1s denoted by F,. It is known that Gm
=[F]~ . We consider our initial-boundary value:problem in the time-
Space domain

Dy = l(x,1): XeQ,, 0<t < T},

Where Q,, = F,,(£2). Obviously, the mapping ¢ defined by
@ =8, Xx= F(s).(y’

i$ a diffeomorphism in a neighbourhdod ‘of Ay, which maps 4, onto Dy. For
any. function h.defined in: D; we put

h(y, 8) = h(x, 1),

Where (x, t) and (y, s) are connected by (4). Then, by Lemma 5, the mapping
®*: h sk maps H,(D;y) onto H,(4;) and the following formulas of
derivation hold:
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(5) hz = Z (Dyjﬁ)(Dth)""Es’ Dx,.h = z (Dyk E)(Dx,Gk)-
i=1 : k=1 :

For any he H,(Dy) and t€[0, T) we set h(-, 1) = h(-, 7) (see Lemma 3). In
further calculations we write t instead of s. This ‘is justified by the first
identity in (4).

It follows from (a,) and (a;) that the Jacobian J = det Fy is a
continuous non-vanishing function in 4, so it may be-assumed without loss
of generality that

(as) my < J(y, 1) < m, for (y, t)eAT with some positive m, and m,.
We consider the operator A4 in the divergent form

= — Z Dy ap(x, I)D+Z a;(x, ) D;+a(x, t)

k=1 Jj=
assuming the following:

{(as) the coefficients ay, a; and a are bounded in D;;
(a¢) there is a constant ¢ > 0 such that

Y. au(x, 1)&E = clé?
Jjk=1
for (x, t)e Dy, CeR",

To describe the boundary conditions we introduce the closed subspace
V of H,() satisfying

(a;) CF( Q) <V c H,(Q);
(ag) awe V for each xeC!(Q), ve V.
Moreover, we put

(6) Vo= lvoF 1 veV).
We W,rite

H(W) = lueL*(0, T; W): u,e L*(4,)
for any linear subspace W < H, () and

H(W,) = ue L*(0, T Vi) uteLz(D'r)}-

Obviously, H(W) < H,(4;), H(V,) < H;(D;), and the following lemma,
similar to Lemma 5, is easily obtained: .

LemMma 7. There are positive constants ¢, and c, depending on the family
F, such that

€y 18], < IiU“j-ﬂ(n < ¢ |9l

Jor any veH,(Q), te[0, T], and j =0, 1.
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In the sequel we need also the space
HO(V) = {ue H(V): u(-, T) = 0}.

For fixed te(0, T) let us introduce the Dirichlet bilinear form corresponding
to the operator 4 as

n n -
a(t;u,v)= Y (axDju, D, Vg, + Y (a;D;u, D)oy, +(au, v)g,, -
jk=1 j=1

We formulate our initial-boundary value problem as follows:

(Py) Given feL*(Dy) and uoe L*(Q), find a ue H(V,,) such that
(i) the identity

(7) (uh U)ﬂ(r)+a(t; u, U) = (j" U)Q(t)
holds for any ve V,y and almost all z&(0, T),
() u(-, 0) =u,.
It follows from (7) that the solution of problem (P,) satisfies the

®Quation Auy, = f in Dy. Concerning the boundary conditions let us consider
Some examples. '

Example 1. Put V = H, (); then ¥, = H,(£,,). Therefore u satisfies
the homogeneous Dirichlet boundary condition |

in some generalized sense. |
Example 2. If V = H,(9), then Viy = H; (2,,). Integrating by parts in

(1) we obtain now, for sufficiently smooth u and 0€,, the natural boundary
Condition

" tlsg, =0 (O <t<T),

'Wherer 0" denotes the conormal derivation. Particularly, for A = — A this is

the homogeneous Neumann condition
Y
— =0 0<t<T7),
M e ey

Where Vi is the unit vector normal to 4Q,.

By means of the ‘mapping F, problem (P;) may be transformed to an

°qui}"alent one in the cylindrical domain A;. Using namely formulas (5) and
the identity

| (D,,B)J =D, GN-@NJ~ ‘D J
We can write (7) as



296 H. Marcinkowska

where
bitio, W= 3 { bag(Dy, D}(D, w)dy+
pq=1 9 o
+ ;ﬂ ,Lbp(DypU)Wdy+}\‘2 bowdy
with

n

qu = Z ajk (ij Gp) (ka" Gq):

k=1 -
n n .
b,=D,G,+ Y 4Dy, G)+J™1 ) bpq(Dy, J),
Jj=1 g=1
b =a.

According to (6) and the assumption (ag) the function 5/ belongs to V if and
only if ve V,,. Thus problem (P,) may be reformulated equivalently (with g

=[) as
(P,) Given geL*(47) and uy = LZ(Q) ﬁnd a #e H(V) such that
(i) .the identity

(8) (ﬁta U)Q+b(t; ﬁ,‘U) = (g-) U).Q

holds for all ve V and almost all te(0, T),

(iv) u(-, 0) = u,.

For an arbitrary we H(V) and fixed ¢ let us put v = w(-, t) in :dentlty
(8) lntegratmg both sides over the interval [0, 7] and applying Lemma 6 we
obtain
9 B(u, w) =1, ,,(w),

where
B(#, w) = jb(t w)dt—j(u w)dt+(ii (-, T), w(-, T)o

and

T
lg,uo (W‘) = j (go W)th+(u0’ W( Ty O))Q
0 - .

Now we can state another formulation of problem (P,), namely:
(P3) Given ge L*(4y) and uge L*(9), find a ueH (V) such that identity
(9) holds for all we HO(V).

Proposition 1. Problems (P)) (j = 1, 2, 3) are equivalent when g = f. If %
lS a solution, then (9) holds for all we H (V).
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Proof. The equivalence of (Py) and (P,) has been established. We also

ve just shown that any solution @ of (P,) satisfies (9) for all we H V),

Particularly for we H°(V). To prove the converse statement let us put w(y, 1)

=(¥) (1) in (9) with arbitrary eV, o CZ(0, T). Integrating by parts, in
View of Lemma 7, we obtain '

T T T .
[b(t;#, D) o)dt+ [ (@, v)g @(1)dt = [ (g, v)ge(r)dt
o0 0 0

and this yields (8) for almost all re(0, T). Since we infer from (8) that (9)
Ids for arbitrary we H(V), we can put now w(y, t) = v(y) ¥ (1) with veV,
¥eCl([o, TD, ¥ (0) = 1. Integrating by parts we obtain

T T .
gb(t: i@, )Y @) dt+ [ (@, v)g¥ @) dt+(@(:, 0), v)g
0

T .
= [ (g, VoV (t)dt +(uo, v)y;
0

thus ip view of (8) we get
(@, 0), v)g = (uo, V)g

for arbitrary ve V. As V is dense in L?(Q), this yields the initial condi-

tion (iv).
ProposiTioN 2. There are constants d > 0 and Ao = 0 such that
(1o b(t; v, v) > dllel. o= oIl

Jor any pev, te(0, T).
Proof. For any neR" and (y, )e A, we have

;:-(,ll) Z bpe oty = Z A&y,

‘ pg=1 jk=1 _
Where ¢ — nGy, and n = EFy,. Tt follows from (11), in view of (ag), that

Z bp.q NpMg = €y l'ﬂz

pg=1

With ¢, = ¢csup |F/,|~2. Therefore
Ar .

2 by (D, 0)(D, v)dy 2 ¢, vl .

_ pg=1 0
On the other hand,

[T §5,0,,0vdy+ | botds| < M3 [ 1D, clildy=+ [ o*dy)
Q 12

P=1 0 =10
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with a positive M such that
M > max (sup Ibpl', sup |b|).
- de Ar
Using the inequality

2
i 1
1Dy, oIl < 51D, o1+ 55 If?

and taking & = (¢, M~ 1)Y/2 we obtain (10) with

G (o M\ e
= and ,10--(1+261)M+2.

It is essential for further considerations that the bilinear form b(¢; -, )8
positive definite on V. This may be obtained by a simple change of the
unknown function, namely & = wexp {4t!. Then it is easy to verify that # i 18
a solution of problem (P,) iff + is a solution of the same problem with 4
replaced by gexp{—4A,t} and with the underlying blllnear Dirichlet for®

bi(t; W, v) =b(t; W, v)+ A, (W, v),
where in view of Proposmon 2,
C b(e, ) 2 dlell,

for ve V. In the sequel we assume that the above change of the unkno#?
function has been done, and therefore
(ag) Proposition 2 holds with 4, = 0.

Let us put now, for weH (47),

W] = (5||w||mdr+nw( ONI3 o-+lIw( Diig.a) "

Obviously, [w] = cT||w||1 4r and, integrating by parts with respect to ¢ (s¢8
Lemma 6), we get

ProposiTioN 3. For any we H(V) we have
B(w w) = d[w]>.

Using Lemma 3 we can easily prove
ProrosITION 4. For any w, ve H(V) we have

|B(w, )| < ¢[wlllvlh, 4

with a positive constant ¢ dependmg on the upper bounds of the coefficients. ef
the bilinear form b.

5. Galerkin approximations in the space variable. We define the Galerk?®
approximation of (P,) in the uspal way (see [3]. where other references
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Biven). Let ¥, < V be a finite-dimensional space with the basis {v;!’*,: then
the approximate problem is formulated as follows:
(Q2,) Find a UeH(V,) such that the identities

(U, 0o +b(t; U, v) = (g, v)g
and '

([j( i 0), v)n = (u05 U)sz
hold for all veV,, te(0, T).

Using the decomposition of the approximate solution
Np

(12 O, 0=Y o)y

J=1

We can reduce problem (Q,,) to the following one:
(Qs.») Find ae HY*(0, T) such that

a3y Cé+B(t)o = B(1),

9 Ca(0) =7,

Where

(15) Gy =(v), 0o By(t) = b(r; U, Ug),

Bk (1) =-"(Q(', 1), Uk)m‘ W=, U)o (,hk=1,..., Np.

We have namely

Prorosition 5. Both problems (Q, ;) and (Qs ;) have at most one solution.
The function U is a solution of (Q,,) if and only if o solves (Qs.1).

Proof. The uniqueness of the solution may be seen from Proposition

after integrating by parts and using Lemma 6. It is also easily seen that U

Solves (Q.,4) if x solves (Q3,), and so our assertion follows.
. THEOREM 1. Ler us consider problem (Q; ,) with arbitrary C, B(t), f(1),
and satisfying the following assumptions: '
() C =,
(i) By = sup|B(1)| < o0;
0,T]
(iii) there i‘s a] positive constant x such that, for any EeR"

(B(E, &= 282, <CE, &> > 2x¢;

(v) L, 1), y = R™.
iThen-(Qs,,,) has a unique solution.

St Remark. Using (a,) it is easy to check that the above assumptions are
isfied by C, B(r), B(t), and y given by formulas (15).

hand te[0, T],
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- Proof. For simplicity we write N instead of N, and omit the mterval
(0, 7) in the notation of the considered spaces. We begm with an eqmvalent
formulation of the considered problem. Multiplying (13) in L*¥ by a vector-
valued function ¢ e HY we get, after integrating by parts,

(16) d(x, ) =l,(7)
with
d(e, ¢) = (Ba, ?)~(Ca, ¢)+<Ca(T), ¢(T)),
by (9) = (B, ©)+ <1, 0(0)).

Let us formulate now the pfoblem
 (Q4,») Find an ae L%V such that (16) holds for any pe HY™.
Lemma 8. Problems (Q;,) and (Q,,) are equivalent.

Proof of the lemma. We have just shown that the solution « of
(Qs.4) solves also (Q,4). To prove the converse implication notice first that.
putting ¢; = d,,% with an arbitrary yeC3 (0, T) and j, s=1,..., N in (16}
we see that the solution a of (Q, ;) satisfies (13). Therefore, ae HY and we cag
perform integration by parts in the form d(a, ¢) obtaining

(17) d(a, ) = (B, p)+<{Ca(0), ¢(0))
for any ¢e HY. Comparing (17) with (16) we get

<Ca(0), 2(0)> = <y, ¢(0)>

for pe H?¥, and so (14) holds.
Notice that we have also shown the following

Lemma 9. If o solves (Qq,,), then (16) holds for any @e HY.
Lemma 10. For any @eHY we have
d(e, @) = x|llolll?,

where [lllll = (lll3 + 1o )2 +1p (T)?)"2.

The lemma follows from (iii) if we notice that integrating by parts and
using (i) we get

(Co, ¢) = —(Co, $)+<Cop, |3
and, consequently, o
(Co, @) =1 <(Co. @)I7.

To prove the theorem it is sufficient now to consider problem (Qa#-
The uniqueness follows from Lemmas 8-10. To prove the existence of the
solution we use the method given in [4]. For fixed @peHO" the lineaf.
funcuonal ri-d(r, @) is continuous over L*V, so it may be written in tB¢:



Galerkin approximations of parabolic equations 301
form
13) d(v, 9) = (v, S¢) (veL*¥(0, T))

With S: HO¥ 12N Suppose that for some vo€ L*M we have (vy, S¢) =0
ld'e_ntically in ¢. According to (18) this means that v, solves problem (Q, )
With vanishing data, and therefore, by the above-proved uniqueness, v, = 0.
Thus Im S is dense in L? . In view of Lemma 10, from (18) we get

#|llelli*> < (@, So) < lliell-1ISllo,

so

(19) llelll < 2%~ " ISollo.

As obviously

(20) lls,, (@)l < (IBllo + 17D Il

the Mmapping I: Sp—L;,(¢) is a continuous linear functional over a dense
Subset in L2V and it may be therefore extended, by continuity, to the whole
SPace. According to the Riesz theorem there is a ue LV satisfying /(y)

:f((“, ¥) for all y e L>M. Putting y = S¢ we see that u is the desired solution
Q0. - | o
ProrosiTion 5. Under the assumptions of Theorem 1, if B,,eC'[0, T]
d BeHY, then aeHY,, and

2y lloetls+ 1+ < s (1BI+ 1)
‘W}h Some positive constant p; depending on sup |B™| m=0,1, ..., 1), 1€, %,
[o.n ‘
and. |,
Proof. We have

leflo = sup 1@ SO
"7 pentn Sl

W“hich is equivalent to

o
lladlo = ?::%” N%ﬁé’%'
Thus it foliows from (19) and (20) that
(22) llallo < %~ * (llBllo + I¥)-
Since 4 = C~1(B—Ba) by (13), we have
23 el < 1C™1(1Bllo+sup [Blllalo)
2d for | = 0 we get (21) from (22) and (23). The general case may be easily

Crived by induction.
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It folrlows from Theorem 1 and Proposition 5 that problem (Q,,) has a3
unique solution. Going back to our basic problem (P,), we define its
approximate solution U putting

Ux,1) =U(y,s),

where (x, 1) and (y, s) are connected by (4). Using formula (12) we can write

this in terms of basis functions
Ny

U(xa, t)"—"' _Zl' aj(t)pj(xa t)’
j=
where p;(x, t) = v;(y), and the coefficients a; are obtained by solving (Q34)
or, equivalently, (Q,,4). Obviously, p;(-, H)e ¥, according to (6).
We have the following theorem concerning the error e = u—U:
THEOREM 2. There is a constant 6 > O (depending on T, sup|ay/, suplaj,.
suplal, the constant c in (aﬁ) and the family F) such.that

(24)  sup [le(:, f)llon(,,+IHe( it 0 4

0<t<T

<é( sup ll@(-, n—-v(-, f)|log+fl|u( )—v(-, Dlif odt +

O0sIi<T
+j “a‘t(., t)—vt(.a t)“g,ﬁdt)
0

for any ve H(V,).

Proof. Replacing e by = ii— U and @, by Q on the left-hand side of
inequality (24), we can prove it using the same arguments as in [3], Theorem
3.1. Now (24) follows from Lemma 7. Note that both sides are finite
according to Lemma 4.

We consider now more closely the case where Q2 is a polyhedron and Vi
a finite element space. In Theorem 3 below we denote by §/dt or d/dt the
derivation in the classical sense.

TueoreM 3. Let V, be -a finite element space connected with the
triangulation T, of Q and let (f,)fs) hold. We suppose also that

i) @, @,eL2(0, T H,, () with r+1>n/2+s,

(ii) (0/0t) DSit exists and is continuous in A; for ae A.

Then

T
@5)  sup lleC, O, + [ lleC:, 07y

O0<t<T

< on h'( sup lu( 2y g'i'I Iu( 1 1.0dt+ j |u:( t)|r+1 od )“2

£tsT

with n as in Theorem A.



Galerkin approximations of parabolic equations 303

 Proof. Using Sobolev’s imbedding theorem (see [1]) we conclude from
@ and Lemma 4 that D3 is continuous in Ay for || < s, particularly for
°f€ A. Therefore, D% (¥, t) is a well-defined function of te[0, T7] for any fixed
YeQ. It follows from (i) that

0

2 D5T=DD5 in 4y,

and therefore

26) D, (D& (5, 1) = (D, D5, 1)

for e 4, e, te[0, T]. To obtain (25) we put
o(-,t) = fI,,iI(', t),

Where 7, is the interpolation operator corresponding to the finite element
SPace ¥,. By (26) there is (IT, v), = II,v, and our assertion follows from
Corem A.

6. Galerkin approximations in time. We have shown in the preceding
Sf’?tion that the approximate solution of problem (P;) may be reduced to a
tandard Galerkin approximation of problem (P,) in the cylindrical time-
SPace domain or, equivalently, to the solution of the initial value problem for
q system of ordinary differential equations (Q;,). There are many papers
dSﬂling with discretization of this system by various difference methods (see
3‘] and [6}-[9], where other references are given). In this paper we try to

Scuss the Galerkin approximations, of problem (Qs ). It is clear that in this
Manner we obtain approximate solutions of (Q,,) continuous (or more
smOOth) in time and, consequently, solutions of our basic problem (P,).
In the sequel we suppose that the space ¥, has been chosen and we omit
€ index h to simplify the formulas. Of course, all constants in the obtained
SStimates depend on the fixed system of basis functions {vj}fi'l.
By Lemmas 8-10 it is sufficient to consider the problem

(Qs,) Find an ae HY(0, T) such that (16) holds for any @eHY(0, T).
o We assume that conditions (i)iv) of Theorem 1 hold and choose the
Nte-dimensional subspace X, of HY (0, T) with the basis {q,,}f; ;- Now the
proximate problem to (Qs.y) is formulated as follows:

(Qf, Find an a*e X, such' that
27)

holds

Olds for any ge X,.
Putting ¢* = «—a* we have the following .estimate:
TheoREM 4. There is a positive constant p = max(B,, |C|) such that

d(d*, (P) = Iﬂ,y((P)

) el < poc™* inf fle =l

@eX,
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Proof. It follows from (16) and (27) that for any @eX, we have
d(e*, ¢) = 0, and therefore

d(e*, e*) = d(e*, a— ).
As for Yy e HY(0, T) we have
d(e*, ¥) < pllle*ll -1,

so (28) follows from Lemma 10.

Concerning the finite element approximations it is easy to prove the
following

THEOREM S. Let T, be a triangulation of the segment [0, T and let (T,
(fs) hold with h replaced by t and r replaced by I. Denoting by Y, the
corresponding finite element space we put X, = (Y,)¥ and suppose that

() 125 (so there is no restriction in the case of finite elements Qf
Lagrange type);

(i) B H}(0, T), B,;eC'[0, T1.

Then |lle*l| < wt' with @ = pnq e~ (IBll,+ 13D, n as in Theorem A. .

Proof. It follows from Proposition 5 that ae HY,,, and therefore, by
Theorem A, |

(29) fle —IT2[ly < el P,

where IT¥ denotes the interpolation operator connected with the space Y, (‘“‘]
put IIfa=(Fay, ..., [I¥ay). Thus our assertion is easily obtained if Wé
take ¢ =II¥ a in (28) and use Proposition 5 together with (29).
Going back to problem (P,) let us put
Ny ’
U*(X, t) = Z d}' (t)pj(x’ t)’

j=1

where o* solves (Q,,). Then

Nh N‘l
U-U*= ¥ (;—a})pj(x, ) = ¥ (@;—aP)v,(»)
i=1 I=1

with x = F,,(y) and, using Lemma 5, we get
. _

(30 [IU = U3 0, dt < clla—a*3 ¥ llojiig
0 j=1

with the positive constant ¢ depending on the family F,. The right-hand side
of (30) may now be estimated by means of Theorem 5.
Using the decomposition in terms of basis functions
M,

a*' = z Oy G

m=1
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we see that problem (Qf,) is equivalent to the system of linear equations
Mf

Z amd(qms qk) = Iﬂ,y(qk) (k = la ARRE Mt)'

m=1

It follows from Lemma 10 that the matrix [d (g, 4,)] is positive definite, and
therefore non-singular, so problem (Qf,) is uniquely solvable. Note that the
matrix [d(q,., qi)] is sparse when X, is constructed by the finite element

method; particularly, it is three-diagonal if X, consists of sectionally linear
Splines,

7. Galerkin approximations in space and time. Using formulation (P;) of
our initial-boundary value problem we are led to simultaneous Galerkin
approximations in space- and time-variables. Let namely Z, be a linear
finite-dimensional subspace of H (V) with the basis |Z;} , 1 - We formulate the
dpproximate problem as follows:

(R,) Find a function WeZ, such that
Gy BOW, W) = L,y (W)
holds for all we Z,.
Using the decomposition of W in terms of basis functions
Py
Wy, 0= Y &50n 0
i=t
We see that (31) is equivalent to the linear algebraic system

k
_Z EBE 5) = G (k=1,..., Py

Its matrix is positive definite according to Proposition 3, so it is non-
singular, and thus problem (R,) has a unique solution. Going back to
Problem (P,) we define its approximate solution as W(x, 1) = W(y, 1) or,
®Quivalently, by the formula

Py

Wx,n=) &zx, 1,
i=1

where z;(x, 1) = Z;(y, 1) with x = Fy,(y). -
: To estimate the error of the approximation E = u—W let us put, for
veH, (D),

T
[vlo, = (f lIvll3.q, dt +llo(-, OlI,q, +lv(, D) -
0
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THEOREM 6. There is a positive constant y (depending on T, T, supjaul,
suplajl, suplal, the constant ¢ in (ag), and the family F,) such that

[E]DT < Y lnf "u“—z"l,AT.-

el
Proof. It follows from (31) and (9),' in view of Proposition 1, that
B(ii—-W.2)=0 for zeZ,.

Therefore

et

B(E, Ey=B(i—W, ii—z)

and, using .Propositions 3 and 4, we obtain
[E]<cd™ inf ll@=2, ..

=y

Thus our assertion foilows from Lemma 7.

Let us consider now the case of finite element approximations assuming’
Q to be a polyhedron.

THeorRem 7. Let Z, be a finite element space connected with the
triangulation T, of Ay and let (f,)fs) hold. We suppose that ite H,, ,(4) with
r+1 >n/2+s. Then

[E]DT < m hr la'r-‘- 1.4

with n as in Theorem A.

The theorem follows immediately from Theorem A and Theorem 6 if we
put zZ = n,, &'.
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