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QUEUEING SYSTEMS WITH A RESERVE SERVICE CHANNEL

1. Imtroduction. Applying queueing theory to practical problems one
often comes across two-channel systems in which one of the channels
is treated as the reserve one, e.g. due to running costs. Thus for example
there may be a reserve service counter at the post-office, a reserve ticket-of-
fice at the railway station or a reserve computer in the computing centre.
Operating the system with a reserve channel may be carzied on in two
ways:

1) a specified channel (main channel) is always available and the
operation of the reserve channel depends on the size of the queue, it is
switched on when the number of customers in the system is large enough
and is switched off when the queue size becomes small. Such a system
may be called asymmetric;

2) one of the channels is always available and if the number of
customers in the system exceeds a given level, the second channel begins
servicing. If both are switched on and the number of customers in the
system drops below a given level the channel which actually completed
the service is being switched off. Such a system may be called symmetric.
In this paper we try to answer some questions concerning the operation
of these models.

2. Steady-state probabilities in the asymmetrical model. Let us con-
sider a stochastic service system with a Poisson input with constant
arrival rate 4. There are two service channels: the main channel, always
available, and the reserve service channel which is available only when
switched on. Switching on occurs at the moment ¢ at which the queue
size (it is the number of customers in the system) exceeds N and switching
off occurs at the moment ¢" when the reserve channel completes a service
and the queue size does not exceed n (1 <% < N). There is no limitation
of the capacity of the waiting room. Service times in both channels are
identically distributed, independent random variables with the distri-
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bution function

1—e ™™, x>0,
H(x) =
0, z<0.

Denote by N (f) the queue size at the moment ¢, i.e. N(¢) is the num-
ber of customers waiting or being served at the moment ¢. Further, define
a two-dimensional process

Z(t) = {N(t)7 a(t)},

where a(t) = 0 if at the moment ¢ the reserve channel is switched off
and a(f) = 1 if at the moment ¢ the reserve channel is switched on. There
iIs a one-to-one correspondence between the process Z(f) and the one-
-dimensional process M (t) = Na(t)+ N (). We say that the system is in
the state K, at the moment t if M(t) =14, 1 = 0,1, ... Under the specified
conditions, M (t) is a homogeneous Markov process. In Fig. 1 we show
the graph of intermediate transitions between the states E;.
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Denote by A = (a;) the transition density matrix. Its elements are
of the form

Wiip1 = 4, for ¢« # N,

ANoNt1 = A,

@i 1 = W, for¢e =1,..., N, N+2,..., N+n+1,
(1) a;;_, = 2u, for ¢ = N4+n+2,N+n+3,...,
Uy.iiy = MKy for ¢ =1,2,...,n41,
ai.i=—2au, for + =0,1,...,
i

a;; =0, for all other cases.
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We shall prove here only the first of formulae (1) for 0 <i< N
(other formulae may be proved in a similar way). There is

P{M(h) = i+1| M(0) = i}

Aiiv1 = lim

h—0 h
. o(h))(1— /;h+ o) +o(h) _ N
h—>0

Since a;; < o0, 1 = 0,1, ..., and the convergence

P{M(h) =k| M) =j
o DL =R MO) =)
10 h ’
is uniform with respect to j, the probabilities P,(t) = {PM(t) =i} have
to obey the system of differential equations (see [3], p. 292)

d .
(2) 5P = AP (1),

where P (1) = (P,(t), Py(1), ...)".
We shall restrict ourselves to the steady-state probabilities only
which we will denote by

Q; for + =0,1,..., N,
limP;(t) = .
t—00 ‘P?:—N fOI'Z=N+1,N—|—2,...

Q; is the limiting probability of the state when ¢ customers are pre-
sent in the system and the reserve channel is switched off, while P, is the
limiting probability of the same number of customers in the system
and the reserve channel to be switched on. For the steady-state case
the system (2) becomes

(3, a) 0 = —0Qy+Q,+Py,

(3, b) 0 = 0Q;_;— (14 0)Q;+ Qis1+Piyy, 1<i<n,
(3,¢) 0 = 0Q;_,— (14 0)Q;+ Qi1 n+l1<i< N,
(3,4d) 0 = —(1+0) P +Ps,

(3,€) 0 =oP;_ 1 —(2+ )P+ Py, 2 <1<,

(3, 1) 0 = oP;, ,—(2+ 0)P;+ 2P, n+1<i< N,
(3, 8) 0 = o(@n+Pn)—(2+ 0)Pyi1+ 2Py,

(3, h) 0 =oP; ., —(2+0)P;+2P;,,, 1>N+2,

where ¢ = A/u and @; = 0 for ¢ > N.



Now we shall prove the following

THEOREM 1. If o < 2, then the solution of the system (3,a)-(3,h
satisfies the reccurent formulae

k
(1) Pk+1=2P7'+QPk, 1<k<mn,
i=1
n4-1
(ii) Py = Pk+2ZP n+1< k<N,
k+1
(iii) Qk+1 = QQk_ZPjy 0< k< n,
ntl
(iv) Qi1 = QQk_ZPw n+1<k<< N—-1,
i=1
o \F~N
(v) Py, :(‘2‘) Priry k> N41.

Proof. To have (i) add to equation (3, d) the first k—1 equations
of (3, e).

To obtain (ii) add to equation (3, d) all equations of (3, e) and the
first k—mn equations of (3, f).

To achieve (iii) add to equation (3, a) the first ¥—1 equations of
(3, b).

To have (iv) add to equation (3, a) all equations of (3, b) and the
first k—n—1 equations of (3, ¢).

To obtain (v), first add all equations of (3, a), (3,b), (3, c). This
yields

n+1
e

Therefrom and from the already proved (ii) we obtain

PN+1_§‘(QN+PN) == PN‘I" ZP__QN N

n+1 n+1
2ZP__ _'ZP":O'

Since, according to (3, g),

0

PN+2 =E

0
PN+1 +PN+1_ o (QN+PN)’
2



Queueing systems 443

we have

0

PN+2 = EPN+1'

Applying the induction principle, equation (v) may be easily obtained
for all k¥ > N+41.

Recurrent formulae in this theorem enable the construction of a simple
algorithm for computing steady-state probabilities, the expected length
of queue etc.

3. Distributions of idle periods and busy periods of the reserve channel
in the asymmetrical case. Let x,, @,, @, ... be the sequence of consecutive
moments of switching on the reserve channel and y,, y,, y;, ... the se-
quence of moments of switching it off. There is, of course, 0 < x, < Ys
< @< Y, < ... Define two sequences of random variables

Y, =y—2 .y,
X; = T;—Yq
for ¢t =1,2,...

According to the definition of a(?), #; and y; are discontinuity points
of a(t). X; are the lengths of idle periods of the reserve channel, Y, are
the lengths of busy periods of the reserve channel. X; are independent
random variables with the common distribution function F(t) = P{X, < },
1> 0.

Similarly, Y, are independent identically distributed random variab-
les. In the sequel we use symbols X and Y to denote an arbitrary idle
period and busy period for the reserve channel.

To find the distribution function F(¢) we introduce a homogeneous
random walk U(t) defined on the subset {Ey, E,, ..., By, B,y.,} of the
set of states of the process M(t). E,y,, will be an absorbing state and
the transition densities will be the following: ¢;.,; =y, ¢;;,., = 1 for
1 =0,1,..., N—1, quons1 =4 ¢; =0 for j 2N 41 and li—j] > 2.

LEMMA 1. For the defined random walk with the initial condition

P(U(0) = i) = B;, where ) B; =1 and B, = 0 for k > n, the distribution
i=0
function of the time until absorption in the state Eyy , is of the form
N+1

(4) v () =1— D) Ao,
i=1

N4l
where Y A; =1 and a;>0,1=1,2,..., N41.

i=1



Proof. Let us write ¢;(t) = P{U(t) =14, ¢} =0,1,...,N,2N+1. By
an argument similar to that presented by Gnedenko, Belayev, Solovyev
([4], § 6.4), one can prove that there holds the following system of equa-

tions:
9o(t) = —2go(D)+ pg (1),
9k (t) = A () — A+ ) (D) + pgra (1), k=1,...,N—-1,
In(t) = gy () — A+ p)gn(t),
9;N+1(.t) = Agn(1).
This system may be solved by using the Laplace transform

a;(s) =f e~"g;(t)at,

which yields

4 (s)
An+1(8) = %7
where
N+1 k
() = ss"+ 3 (2t (n—k) 320 4]
k=1 i=0
and
Ats —p 0 0 Do
=4 Atpts —u 0
0 —4A A s ... 0 2,
down) =) 0 A P
0 0 0 eeo A uts Dy
0 0 0 —A 0

a,n,1 (8) is a rational function, so it may be brougth (see [4]) to the

form
N+1

A
(5) Ayn11(8) =Z 8+11- )

=0

where a, = 0, a; > 0 for ¢ > 0, a; # o; for 7« #j and

A, = A2N,+l(_a1;).
A (—a)

It is easy to see that

A — A21\'+I(0) _
° A'(0)



Applying the inverse Laplace transform to (5) we obtain (4).
Denote by p; (0 < i< n) the probabilities that at the moment of
switching off the reserve channel the number of customers in the system

n

is equal to ¢. If A< 2u; then > p, = 1 since the reserve channel may

1=0
be switched off only when the number of units is not greater than n.
The following theorem may be proved:

THEOREM 2. The distribution function g¢,y.,(t) defined by (4) in
lemma 1 is the distribution function of idle periods for the reserve channel
in the asymmetrical model.

Proof. Let us assume that the moment ¢’ is the starting point for
an idle period of the reserve channel and there are customers in the system
at. that moment (i.e. M(t'+0) = N+k+1, M(t') = k). From that mo-
ment until the next switching on of the reserve channel the process M (t)
is equivalent to the random walk U(t—1t’) starting from the state K.
The absorption in the state E,y., corresponds to the next switching on
of the reserve channel, so the absorbing time is equivalent to the length
of the idle period. The probability of the initial state E, (i.e. M (1) = k)
is equal to p,. Applying lemma 1 for p, = p,, we obtain F(f) = g,x,,(?)-

Remark. p; may be computed using the methods of Markov chains.
Let us consider a homogeneous random walk V; in discrete time on all
states of the process M () with transition probabilities

Py = 45
= )
’ 4;‘ 4;;

where ¢; ;,, = Afor i = N+1,¢;4,: = ¢ for N+1<i< N+n, ¢, =2pu
for i > N+n+1, grpipr = 4 for 0< t<m, ¢; =0 for the remaining
cases. If 2 < 2u, we may restrict our considerations only to the random
walk defined on the states Ey, By, ..., By Exo 1y Ex gy .oy By, i, Where
By pn.q is a reflecting state. We obtain a finite Markov chain for which the
steady-state solution may be found by solving the finite system of alge-
braic equations ([1], XIV, § 7).

Without knowing the distribution function F (i) we can compute
the expected lengths of idle periods and busy periods of the reserve channel:

EX =2P1E(X | M(0) :j)’

where E(X | M (0) = j) is the conditional expected value of X given the
state E; at the beginning of an idle period. E(X | M (0) = j) may be com-
puted applying a method similar to that used by Gnedenko et al. [3]:

L 1=V (N—j+1)p

6 E(X | M(0) =)) = —

0<j<n.



Since EX/(EX+EY) is the steady-state probability of the reserve
channel to be switched off, which is equal to

N
lim P{a(l) = 0} =§Qj,

we may calculate also the expected length of busy period of the reserve
channel:

N
1— ;)Q,.
_er_—
29

4. Theory of the symmetrical system. In the symmetrical case we
have the system with two channels, each of them is either switched on
or switched off. If only one of the channels is switched on, the switching
on of the other one occurs as soon as the number of customers in the
system exceeds N. If both are switched on and the number of customers
in the system drops to the level n, the channel which actually completed
the service is being switched off. Here we assume also a Poisson input
with arrival rate 4 and the distribution function H(x) = 1—e ** of ser-
vice times in both channels.

Let us define

EY = EX.

Zy(t) = {N (1), b(1)},

where b(t) = 0 if at the moment ¢ only one channel is switched on and
b(t) =1 if at the moment ¢ both channels are switched on. Similarly
as in section 2, we define M (f) = Nb(t)+ 2N (f)—n. The steady-state
probapbilities

: <N

lim P{M,({) =i} = @ T

{—>o0 Pi—N+n7 7/ > N
are of the form:
(1) Qx =Q09k7 0<k<n,
. 1— oV k+1
(1) Q =QoQkI_—QNT+1, n+l1<k<N,
yap 1—e 1—(o/2)F
(i) Py = Q0" 5, 1 N n+l< k< N+1,

k N—-n+1
. e 1—p0 1—(0/2)
(IV) Pk = QO Qk—N-1 2_0 1_QN—n+1 ’ k> N+2’
1 N—n+1)Ntt 77!
) o-l—-5 |
1—e (2—9o)(1—p )
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Let us denote by @, 4, ,, ... the sequence of the moments of swit-
ching on and by ¥, 9., ¥s, ... the sequence of the moments of switching
off. Define two sequences of random wvariables:

Y, =yi—2_,,
Xi=a7,;—yi, 7:=1,2,...

X, and Y, are independent random variables with distribution
functions @(t) and G(t), respectively.
From Lemma 1, assuming the initial condition 7; = ¢,,, follows that

@ (t) is of the form
N+1

D(t) =1— D' Aye ¥,
k=1

N+1
where @, >0 and D 4; = 1.
k=1

Similarly to (6), we can compute the expected value of X, as
1— QN—n-l-l (N—

X. = _
B AgN (1—0)?

i
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Fig. 2

To find the distribution function G(¢), we notice that the simultaneous
work of both channels may be described in terms of a homogeneous
random walk in continuous time M™(t) on the states E,, E, 11y Bxgy e
(see Fig. 2). Eyy_,, is the initial state and E, is the absorbing state.
The non-zero transition densities are 4 for the transitions from E,_, to B,
and 2u for the transition from E; to B;_, (> N+2) and 2x from Ey.,
to E,. The length of the simultaneous work of the both channels is equi-
valent to the time in the random walk until the absorbing in the state E

Therefrom and from [2], XIV, §6, it follows that
G(t) = P{M*(t) = n| M*(0) = 2N —n+1} = (L7})*@W-n+1 ()

n*

where L~!(¢) is the distribution function of the first transition from the
state E; to E,_,. The Laplace transform of the L='(¢) is

o] -1
[ eaz() =[1+2u+s+V(i+2u+s)2—szﬂ]
0 u




(see Feller [2], XTIV, § 6). Hence the Laplace transform of the distribution
funection G(t) is of the form

G*(S) — [}-+2/‘+ 3+]/(2+2‘u—{-—3)2_821u ]—(N—n+1)
du

Knowing G*(s), we can compute moments of the random variable
for example

By, - _ [ _ (Fonti,
dS s=0 (2'_'9)1
and.
vary, - —n+D6=0)

ni(2—o)?
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J. BARTOSZEWICZ i T. ROLSKI (Wroclaw)
SYSTEMY KOLEJKOWE Z REZERWOWYM KANALEM OBSLUGI

STRESZCZENIE

W pracy autorzy rozwijaja teorie systeméw M/M/2 z dodatkowymi zalozeniami
co do dostepnoéci kanaléw obslugi. Oba kanaly sa dostepne tylko wtedy, gdy w sy-
stemie znajduje si¢ duzo jednostek. Przy malej liczbie jednostek w systemie jeden
kanal zostaje wylaczony. Rozrézniane sa dwa przypadki: przjpadek asymetrii ka-
natéw i przypadek symetrii kanaléw. W przypadku asymetrii jeden wyrdéziniony
kanal (podstawowy) jest zawsze dostepny, podczas gdy drugi kanal (rezerwowy)
zostanie wlaczony w momencie, gdy liczba jednostek w systemie przekracza N, a wy-
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laczony wtedy gdy w chwili zakoriczenia obslugi w tym kanale liczba jednostek w sy-
stemie okaze sie nie wieksza niz n(l1 < n < N). W przypadku symetrii zaden z kana-
16w nie jest wyrézniony i jesli oba pracuja, to wylaczony bedzie ten, ktéry pierwszy
zakonczy obsluge w momencie, gdy stan systemu spadnie do liczby = jednostek.

Autorzy podaja wzory rekurencyjne na rozklad prawdopodobienstwa stanu
systemu (liczby jednostek w systemie) w warunkach stacjonarnych dla przypadku
asymetrycznego oraz jawne wzory na analogiczny rozklad prawdopodobienstwa
w przypadku symetrycznym. Ponadto autorzy podaja dla obu przypadkéw metody
uzyskania rozkladéw dlugosci okreséw wlaczenia i wylaczenia kanalu rezerwowego.

SI. BAPTOLIEBHUY u T. POJBCKH (Bponnas)

CUCTEMBI MACCOBOI'O OBC/IIY2KMBAHUSA C PE3EPBHBIM KAHAJIOM
PE3IOME

B pafoTte aBTOPH IpejgaraioT Teopuio cucreM M/M/2 ¢ MONOJIHMTEILHHM Tpe-
HOJIOEHHEeM OTHOCUTEJLHO HOCTYNHOCTHM KAHAMOB of0cay:xuBauna. 006a kaxaia
NOCTYIHH TOJNLKO TOT[A, KOTAA B CUCTeMe HAXOJUTCH GOJIbIIOE KOJMYECTBO OMMAAIONINX
TpeGoBannit. Korga umcimo omumanmux TpeGoBanuit He GosbINoe, ONMH M3 KAHAJIOB
BHIKJII0YAEeTCH, MEepexXoAsa B pe3epBHOE COCTOAHME. PasnuyaloTcsa aBa YacTHHX ciryyas:
ciyyalf acMMMeTpMU KaHAJIOB U CIyYalt CHMMETPMM KAaHaJO0B. B ciaydae acummerpun,
onpefeJleHHEI KaHaJ (OCHOBHO) BCerja OCTyNeH, TAK KaK BTOPOH KaHaw (pe3epBHHELi)
BKJIIOUAETCA, KOrga 4YMcjio TpeboBaHmi B cucreme mnpeBomaer N M BHKI0OYaeTCA
ecnn umcao TpeGoBammit B cucreme He Gomee n (1 < n < N). B cayuae cummerpuu
06a KaHaja paboTalT HA OMHAKOBHX YCIOBUAX: €CIM 062 BRIIOYEHEI, TO C TeUeHHEM
BPeMEeHM BHIKIIOYAETCHA TOT KAaHAJ, KOTOPHIA BAKOHYMUT 0GCIYHUBAHME B MOMEHT Bpe-
MEHM, KOTJa B CHCTeMe 4YMCi0 TpeOoBaHMI yMEHBIIMIIOCH [0 n.

ABTOpPH BHIBORAT PeKYPPEHTHHE (QOPMYJH [JA PACHpE[eNeHNA BePOATHOCTH
cocTosAHM# cucTeMul (4nmcina TpeGOBaHMiT B CHUCTeMe) B YCJIOBMAX CTALUOHAPHOCTH
IIA CIyyasds acMMMeTpUU M ABHBHIE QOPMYJE JJIA AHAJOTUYHOrO pACHpe[esIeHnA Bepo-
ATHOCTM B ciyuae cuMMerpuu. Kpome Toro, mas o0ouMX ciay4yaeB yKasaHb MeTOMbI
NOJy4YeHUA pacHpefeieHuil NIMHH IEPHOA0B BKIIOYEHUA M BHIKIIOYEHUA pPE3epBHOrO
KaHaJja.



