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PIECEWISE MARKOV PROCESSES ON A GENERAL STATE SPACE

1. Introduction. In applications of stochastic processes the following
class of processes often appears. The process starts from some point z
of the state space 2 and it evolves as some Markov process (the transition
function of which depends on z € &'); at the instant v, the process jumps to
another point of the state space & according to a given distribution (which
depends on the state just before the jump). Next the process evolves as
some Markov process, etc. Such processes are called piecewise Markov
processes (in the sequel abbreviated to P.M.P.).

A semi- Markov process (see, for example, [5]) is the simplest example
of a P.M.P.

Let & be a complete subset of the Euclidean n-dimensional space #£"
and let § be the g-algebra of Borel subsets of 2. The measurable space
(Z, &) is called the state space.

On (%, &), there are given:

(i) & class of measurable, Markov transition functions {P*(t,y, 4),
reZ}, i.e. P*(t,y, ) is a probability measure on (%, &) for every z, y € &,
t>0, P*(-, -, A) is a measurable function with respect to the product
o-algebra B, x F for every x € ¥, A € §, and B, denotes the s-algebra of
Borel subsets of 2, = (0, x);

(ii) a Markov kernel Q(z, 4), i.e. @(x, -) is a probability measure
for every # € &, and Q(-, A) is an F-measurable function for every A e §;

(iii) @ class {u”®, z € &} of probability measures on (%, ,B,).

Definition 1. A stochastic process X (t), ¢ > 0, on the probability
space (2, S, P) with values in the state space (%, §), the trajectories of
which are right-side continuous and have left-hand limits, is said to be
a piecewise Markov process (P.M.P.) if there exist random points 0 = 7, <
7, < ... (called regenerative poinis) such that, for n =1,2,...,

(a‘) P(Tn_T1L-—l € Bleg7 $ = Tn—l) = P(Tn_rn—l € BI@:, $ = Tn—-l)
= I‘X(f"_l)(B)’ Bes,,
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and & [GI"1,0 < s <1, is the c-algebra generated by the family of sets
of the form

{o: (X(tl),...,X(tk))ele vee XBp,s<t <. <K
[s < L<h<tl}), Byef, k=1,2,..,
(b) P(X (z,) elsue0 ,s—-r) Q(X(r,—), 4),
(e) P(X()GAITn_l <t 7, o) =P(X(t)€A|6§V$'X(zn_l))
= X (7,_,)P(X(t—s), X(s), 4),

where 8x(r,_, 18 the o-algebra generated by the random variable X (z,_,),
and &;V §x(,_, is the o-algebra generated by the union S;UF (., -
All equa,htles in (a), (b), and (c) are given P-almost everywhere. Let

P(limz, = o) = 1.
n—>0o

The aim of this paper is to derive relations between the stationary
probability distribution of a P.M.P. provided it exists and the stationary
probability distributions of the imbedded chains X(v,—) and X(z,)
for n =1, 2, ... These relations are obtained by the use of the contraction
semigroup theory.

A P.M.P., in the case where P* and u® do not depend on = € 2, has
been analyzed by Baklan in [2]. He has shown that

lim sup (P(X(¢) e 41X (0) = z)—

t—o00 xeZ

fN"‘(dw u(t, ) P, o, 4)dt| = 0,

ft:(dt f

where Nt is the stationary probabﬂlty distribution of the Markov chain
X(z,) for n =1, 2, ... In the Corollary to Theorem 5 we obtain & similar
result for a general P.M.P., we prove, however, point convergence only
and our assumptions are different from those of Baklan.

The case where & i3 a discrete space was analyzed by Kuczura [9]
by the use of renewal theory. In [6], different proofs of Kuczura’s theorems
by the application of the extended Markov process and prospective Kolmo-
gorov equations are given. This method was used earlier in the theory of
queues by Kopocinska and Kopocinski (see [7] and [8]).

2. Notions from the contraction semigroup theory. Definitions and
theorems, except Definition 4 and Theorem 3, are quoted from [4]. Assume
that (2, ) is a state space, P(t,x, A) is a measurable, Markov transi-
tion function, # = # (%, &) denotes the Banach space of signed measures
on (Z, %) having finite variation, and Z = #(%, §) is the Banach space
of real, bounded functions.



Piecewise Markov processes 423

Markov transition functions induce the following two semigroups.
of contraction operators:

T;: 3f(-)~> [f(@)P(t, -, do) e &, 1>0,
x

and
' U: #5M(-)> [ M(dx)P(t,z,")eM, 1>0.
x

We denote by T the semigroup T, and by U the semigroup U,, ¢ > 0.

Let % be a Banach subspace of the space & such that €* > .#, where ¢*
denotes the Banach space conjugate to %.

Definition 2. The sequence of measures M, e /4, n =1,2,..., is
said to be weakly convergent to the measure M (w-lim M, = M) if, for
every fe¢, e

lim [f(2)M,(dz) = [f(z)M(dz).
x

n—>o0o x

Let us write

(1) Y ={Me: w-lim UM = M},
%0
UM —-M
(2) 92 = {M e M: w-lim — exists}.
0

Definition 3. (i) The operator A is said to be an infinitesimal gen-
erator of the semigroup U if, for M € 9,

. OM—-M
AM = w-lim ——.
50 t

(ii) The operator R, is said to be a resolvent of the semigroup U if
R,M = fme‘”U,Mdt.
0
(iii) The operator R is said to be a potential of the semigroup U if
RM = fw UM dt
0
provided the right-hand side exists.
THEOREM 1. If M, = RM, and if M, ¥, then M, € 9 and — AM,
=M,.

THEOREM 2. The operator AI— A, 2 > 0, is a one-to-one mapping of &
onto & and R, = (AI—A)™', where I denotes the identical o perator.



424 M. Jankiewiez and T. Rolski

Definition 4. The non-negative measure N € /4, N # 0, is said
to be invariant with respect to the semigroup U if U, N = N for every ¢t > 0.

In the sequel we assume that, for invariant measures, N (%) = 1.
The following theorem shows how an invariant measure can be found.

THEOREM 3. The non-negative measure N (N (&) = 1) is the only inva-
riant measure with respect to the semigroup U if and only if the measure N
belongs to 2 and N is the unique solution of the equation AN = 0.

Proof. We prove only the sufficient condition; the necessary condi-
tion can be proved in a similar way. From Theorem 2, putting A =1,
we know that there exists a measure N, € & such that N—AN = N,
and N = R, N,. Since AN = 0, we have R, N = N which implies (see [1])
that N is invariant with respect to the semigroup U. Now, let us assume,
to the contrary, that there exists another invariant measure N, # N.
We have AN, = 0 which is contradictory, since N is the unique solution
of the equation AN = 0.

3. The transition function for an extended process. In the sequel
the following notation is used: # = (— o0, ), and B is the o-algebra of
subsets of #; & is a complete subset of #"; ¥ denotes the og-algebra of
subsets of &;

(E XXX, FXFXB,) =(Z,F); (TXL,FxXF = (Z,F);

the bar (wave) mark is used for the notation connected with the space

(Z,%) ((3%7 ) ‘f;-)); Greek letters are reserved for probability measures on
{#2,,8B,), and capital letters for probability measures on different spaces.
The indicator function of a set B is denoted by xz(-).

Let X (t), ¢ > 0, be a P.M.P. with state space (&, §), let

Y(t) = X(Tn—l)

20) = 7, —1t for 7, ,<t<7,,n=1,2,...,
=7,—

and let, for 4 cF and 7 € Z,
P(X(®), X(t),2(t) € 41(X(0), X(0), Z(0)) = &) = P(¢, 7, 4).

Let V,(%,:) for kK =1,2,... be a measure on (% x &, B% xF)
such that, for B, X ... xB,x A eB* xF and for z = (v,y,2) € %,

Vi@, By X ... XBpxA)
= [Pz, @, d8)) [Q(s1,dmy) [u3(dey) % ... X
x z B;

X [P* oy, @y, d8) [ Q(8y, duy) p™(By).
x A
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THEOREM 4. The process (X (1), Y (1), Z(t)), t > 0, is Markov and its
tramsition function satisfies either

(3) P(ty (%, 9,2), ) = I—I(ty (z,9,2), ')+
+ %011 (?) ny(z’wyd%) fQ(mud‘vz) fp,zz(dzl)P(t—z,(mz, Ly 21), ')’
T z R,

where x,y € X, 2 € R, and II is a transition function such that, for z,y € Z,
ZeR,,

H(t, (®,y,2), AXBX C) = PY(t, x, A)XB(?/)ZC’H(z)’
or

(4) P(ty(a;yy7z)") =17(t,(w,y,z),-)+

+ D [ Vi@,y,2),dey X ... X da X dwy) X
k=1.42]_"_x£‘

Xﬁ(t_z_zl_ oo =2y (@1, %y, 2), ')X(o,t](z+zl+ cer T2y).

Proof. The behaviour of the process (X (t), Y (t),Z(t)), t > 0, after
the moment ¢ depends only on the state of this process at the moment ¢,
thus it is a Markov process.

Let £(1) be the number of regenerative points in the interval

(0, t], i.e.
E(t) = max{k: 7, <t}+1.

k=1
Then, for A><B><0’e§ and ¥ = (w,y,z)e%we have
P(X(t)e A xBxC|X(0) =z)

= YP(X(t)eAxBxC, £(t) =k X(0) =3)
k=0

=P'(t, 2, A) W e+ D [ Vil®, doyx ... X dey x day) X
k=1 g x o
XIT(t—2—2,— ... —24_y, (B, ¥y, ), AXBXO)gone+a+ ... +2.,),
and hence we obtain (4). In a similar way we can show that
P(X(t)e A x BxC|X(0) = =) _
=P(X(t)eAxBxC, £@1) = 0] X(0) =2Z)+
+P(X(t) e AXBxC, £(t) >1|X(0) = %)
= Pl @ A)sWhton (@) + 2oa(®) [P0, dm) [ @, doy) x

X f‘usl(dzl)l—s(t_z’ (81,81,21),A><BXC),
R

+
which completes the proof.
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We have two transition functions P and IT on (%, §). They induce
two semigroups of U contraction operators: P, and I_I,, respectively. Let
2(R), 2(I), and Z(P), #(II) denote sets 2 and £ defined by (2) and (1),
respectively. A(P) and A(ﬁ ) stand for the corresponding infinitesimal
generators, R,(P) and R,(II) for the corresponding resolvents, R(P)
and R(IT) for the corresponding potentials. We write

Pyz,:) = [e*P(t,%,-)dt and IN(Z,-)= [e ™Iz, )d.

9?+ 5?.*_
COROLLARY. We have
(5) Py(@,") = + [V, Iy, ) forze.
T

Proof. Multiplying (4) by ¢~* and integrating from 0 to o we get
the assertion of the Corollary.

4. Main theorems. Let €,(Z) denote the class of real-valued, bounded,

continuous functions vanishing at oo and let ‘Eo(.%) be the subspace of
real-valued, bounded, continuous functions generated by functions of

the form f(x,y)g(z), where f e %0(95‘ ) and ¢ is bounded and confinuous.
In the sequel we assume the following propositions:

(A.1) € =€, (%).

(A.2) For every f e %0 _)

im [II(t, %, d5)f(5) = f(%).
x

N0
(A.3) For every f % (?)
limsup | [ u?(d2) fﬂ(t (@, @, 2), d5)f(5) — fy (d)f (e, @, 2)| = 0.

IO 2 ‘Q+

(A.4) For every fe %o(er ),

[Qe, dmy) [ p*1(d2y)f (@1 31, 21) = (@) € ().

- & R,
(A.D) There exists a continuous function &: £,—->%,, lime(t) =0,
such that 0
sup [ Q(s, dw)u((0,1]) < (1), t>0.
8eX x
(A.6) supfy(t oo))dt < M < oo.
‘2% g

(A.7) There exists a stationary prebability distribution N, i.e.
w- limp(ty T,') = N();
{—oco0
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such that, for some version of the conditional probability
N(A x B|z), for every f € €,(Z) we have
lim fN(dm x dy |2) f PY(z, z, da,)f (%, ¥) = fﬁ—(dm X dz)f (@, ¥),

2\0

where N~ is a probability measure on (9? , '{’;'). This stationary
probability distribution N is the unique invariant measure with

respect to the semigroup P;.

Remark. Let us note that N~ is the stationary distribution of the
Markov chain (X (z;), ¥(v;)) forn =1,2,...

In the sequel, the invariant measure with respect to the semigroup P,
will be denoted by N. According to our convention, we write

N(AXB) =NAxBx®R,), NA) =NAXEIXR,),
»(C) = N(ZxZx0), N-(A)=N"(Ax%), A,BeF, CecB,.

LEMMA 1. N € Z(I1).

The proof of Lemma 1 is omitted.

LEMMA 2. N e 9(IT).

Proof. Since N is invariant, we have R,(P)N = N (see [1]). Using (5)
we obtain

N(-)=R(P)N (") = _fN(di)E(a—c, ) = R(IN()+

+ [N@&) [V(z, a),(7, ) = Ry(INN(-)+ f N(dz) [V (=, dg)T.(7, ).
z 3 z
Thus the operator R,(II) maps one-to-one Z(II) onto 2(IT) (see
Theorem 2). Hence it suffices to show that
[N@z)V(=z,-)e2.
T
Let f € %,(%). Then
lim [ N(dz) f V(z, dz,) f 1t %y, d%,)f (Z,)

NGO 7

f N (d%) f 7 (z, dz,) (hm fﬂ(t %, A%,) f(xz) (by the bounded con-
z N0 & vergence theorem)

= f N (dz) f V(x, a%,)f (%) (by (A.2))
F ¥

and the proof is completed.
LEMMA 3. There exists a ¢ > 0 such that »((0, z]) < ¢r, v > 0.
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Proof. Since N e 9(II), there exists a signed measure ¢ with finite
variation such that

W(0) = FN@xxx0) = [([ e*“x0+,(z)dt)<p(dz).
R, R,

Let ¢+ be the positive part of ¢. Then
2((0,7) < [ ( [ e*ruurn (@) dt)o (d2)
R, R,

< [ ([ teeea(@dt)p* (@) < g*(R,)7
Ry R

THEOREM 5. The invariant measure N satisfies the equation

A(II) N+mN* =0,
where
N+(AxBxC) = [N~(ds) [Qs, dw)y5()n*(C)
x 4

and

m™ = | fNJf(da:)u ((¢, o0))dt.

g

Remark. Let us note that N* is the stationary distribution of the
Markov chain (X(z,), Y(%,), T,p1—7,) for n =1,2, ...

Proof. From Theorem 3 we infer that N is the unique solution of
the equation A(P)N = 0. By Theorem 4 we have

BV 1 = — 1,

A(P)N(+)=w-lim — (H,N(-)— N(.'))_—_W-lim—fN(dwx dy X d2) x0,4(?) X
ino 0 tno B Y g
X fP”(z, o, ds) fQ(s, dw,) f,,zl(dzl)ﬁ(t—z, (@, @1, 22), ) = 0.
2 3 g_!_
Since, by Lemma 2, N € 2(II), we infer that
w- hm—(ILN N) = A(IHN
0

exists. Hence for f e%o(.%“ ) the limit

IAN(]

1
6) lim= [ N(dwx dyx de)z0,(c) fp (2, @, ds,) fQ(sl,dwl)x
x

f uiam) f P~z (@1, @, 2), 47) /(5)
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exists which, as we will show, is equal to

1o
lim 2 [ F(dn x dy x d2) g (2) f PY(z, %, ds,) f Q(s,, dw,) X
x ¥ x

o
X f‘u“l(dzl) fﬁ(t'—zy (@121, 21), dﬁ)f(ﬁ)‘
2 3
To prove it let us note that

1 —
= J F (dw x dy X de) 70,9 (%) xf PY(z, o, ds,) xf Q (81, d;) X

£

X f”zl (dzl) f(P (t—z, (ml, wl, 21), d’l?) "‘I—T(t_z, (wl’ .’L’l, zl)’ d’l_)))f(ﬁ)
Zy
1 . .
=— | N(dw X dy X d2) 50,4(2) | P2, 2,ds;) | @ (81, dw1) | u®1(dzy) ¥
Yy
X X©,t—2] (1) szl (1) @1, 85) fQ(s'z, dz,) fﬂzz(dzz) X
& & £,

x [Plt—e—z, (@, 21,2, 0)f@)  (by (3)
[3

t
S%fv(dz) fﬁ(d‘”Xd?/lz)JP”(zyw,d81)JQ(81,dm1)'x
0 ¥

X u*((0, t—=2])sup | f(9)|

ve¥

<

e(6;)»((0, ¢]) sup ()| >0  as N0, 0<6<1

1
l ve&¥

(by Lemma 3 and (A.5)).

Now, assume that

N0

(7 »(0) = [h(z)dz, OB, and limh(z) = m.
C
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Then for f e ‘60 ) we have

t
1
lim— [ 1(2) dsz (do > g 12) fP”z 2, ds,) fQ(sl,dwl)x
L]

iNO

x [ umazn) [O(t-2, (@, 0, =), 6)1()
Ry ’ x

«

[AN)

t
1
= lim— hz)dszdwxdylz fP (2, @, ds,) f@sl,dazl
0

x [ ude) f@,@,2) by (A3)

—m [§-(d2) [Qo,dn) [ wm(@)f(@, 01, 2)
% z R,

(by (A.4) and (A.T7)).
Hence we obtain
{8) A(IHN4+mN+ = 0.

To eliminate assumption (7) we show that the solution of equation (8)
{which is unique) satisfies this assumption. Using Theorem 1 we have

N()y=m [( [I,7,-)a) N+ (dz),
T %y
and hence

v((z, oo)) =m f fN+(dm)y””((z+t, oo))dt
®r, Z

{the right-hand side has the sense by (A.6)). Thus

h(z) =m [ N*(dw)u®((2, ) and limh(e) = m.
x

Z\0
This completes the proof.
COROLLARY. (i) For A,Be§ and C B,
N(AXBx0)=m f fN+(dw [ u=(de) P*(t, @, A) yp(w)dt
C+i

(ii) For A e,

HmP(X(t) e 4|X(0) = o) = m [ N*(da) [P=(t, @, A)u®((t, oo))dt.
x -Q+

o0

In order to give a formula which relates N, N* and N~, we need some
stronger assumptions. Instead of (A.3) and (A.5) we assume:
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(A.3') For every fe €, (%),

lim sup | [ u*(de) f I, (,9,2),d)f(®)— [u*(d)f(@,y,2)| = 0.
INO z,yeX %, x4
(A.5") limsup »®((0, ¢]) = 0.
INO z2eX

We need the following lemmas.
LEMMA 4. For every g € €,(¥),

lim sup | [ P¥(t, @, dw,)g (@1, y) —g(a, 9)| = 0.

INO Z,yeX o
Proof. Let ¢ > 0. From (A.3'), putting f(z, v, 2) = g(=, ), it follows
that there exists a T, such that, for 0 <t < T,

sup
x,ye&

&
u () [ Py @, don)g (s, 9) =902, 9)| < o,
and from (A.5’) it follows that there exists a T, such that, for 0 < t < T,,

z &
sup (L—#*(t; o)) < 5 suplg(@, 9)I.

z,yeX

Hence, for ¢ < min(7T,, T,),

sup | | [Pt @, dw)f (@1, y)— (@, 9) |
Z,Ye
< sup 7?/)l+
z,ye¥
+sup | [ PY(t, @, doy)f(@y, ) | sup(1— p*((t, o0))) <.
T, Y% g zeZ

LEMMA 5. For every f € €,(%), we have

Z2\0

lim fN(dwxdy]z f@,9) = [§~(dwxdy)f(=,y).
F

The lemma follows from Lemma 4 and (A.7).
THEOREM 6. We have

A(IHN = m(F~—N7),
where, for AXBeFxF and ,y € X,
ﬁ(ta (®,9), A X B) =P, x, A)kB(?/)W

2 — Zastosowania Matematyki 15.4
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Proof. Let f(#,v,2) = g(2,y) € 6o(Z). Then, using the identities
[ Fawxayxan [1(, @,9,2), a8, x ag, x dn)f(E,, &0, m) -
g x
~ [ Fams@)
£

1 T ~
—_--t_(fN(dmxd?/X(t, oo))ifﬂ(t,(w,y), A&, X A& g(£r,) £a)—
x

- f F (do x dy)g(a, v)

1
=7(f (do x dy) fﬂt (@, 9), A&y X AE,) g (&1, &) —
x

N(

f N (dx x dy)g(w, ?/))
&

1

t

[ F(dox ay x o, t])fﬂ(t (@, ¥), 3&, X dE)g (&4, &),
F

we obtain

eu-| o
—
@I%

N(dox dyxde) [ 11{t, (@, v, 2), 4, x A& x dn)f (6, 2, 1) —
T

— [ Fiaox ayx df(z, v, )+

x

+5 fN(dwxdyx(O,t]) [Pt 2, a9, )

P &

= %(fﬁ(dmxdy) fﬁ(t,w,dflxdéz)g(év 52)—fﬁ(dwxdy)y(af,y))o
E # z

Hence we have

lim = fN(dwxdyx (0, ] fP”(t 2, a£)9(61,9)

AN}

— hm— fN(dmxdyx(o t])g(x, v) (by Lemma 4)

AN

im - f W@ [ Fdoxdylag(a, y)
£

=m f.ﬁ"(dwxdy)g(w,y) (by Lemma 5).
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Since N € 9(IT), the limits (fot ¢\ 0) on the left-hand side of (9)
exist, and hence the limit on the right-hand side of (9) exists and is equal
to A(II)N. Thus we get

1
lim—(
tno O

[Fasxayxae) [Tt (@,y,2), a6 x d, x dn)g (&, &) —
3

T

— flV(dwxdyxdz)g(% @/))
Z

_ f(A(ﬁ),ﬁ—le°)(dedy)g(-’”,y)
§~

which, by Theorem 5, completes the proof.

Remark. In the case where P* = P and u* = u, v € &, it suffices
to use assumptions (A.3) and (A.5), and the assertion of Theorem 6 re-
duces to

A(P)N =m(N-—N?*), where m™! = f:v,u(da;).
Ry

5. Applications. Consider the queueing system GI*-+M¥/G/1 as
an example of a P.M.P. Such a system is described as follows: groups
of customers of the first kind arrive in the queueing system at the instants
0 =7,<7,<..., where 7,,, —7; (i =1,2,...) are independent, identi-
cally distributed random variables (abbreviated to i.i.d.r.v.) with the
distribution function (abbreviated to d.f.) equal to F. Groups of customers
of the second kind arrive in the system according to a Poisson process
with rate A,. The size of groups in the general input stream (Poisson stream)
are i.i.d.r.v. with common d.f. equal to H, (H,). The service times of
customers of the first kind (the second kind) are i.i.d.r.v. with continuous
d.f. equal to G, (G;). The virtual waiting time W (t) (see [3] for the
definition) is the P.M.P. (¥ = (0, o)) for which the instants z,,n =
1,2, ..., are the regenerative points. Let

K,(y) = [67*(y)H,(d2)
2
(@*" denotes the n-fold convolution of G, G** (%) = x,.)(¥)) be the d.f.
of the total sum of service times in one group. The transition function
of the process between consecutive regenerative points is equal to
(A:)*

P, z,[0,y]) =exp[ —ﬂzt]Z——’;—K;"(y—w—H)—l-o(l), Lz, y >0
k=0 :

(see [10], (2.55), p. 79), and the Markov kernel is
Q,4) = [d [GF(y)H,\(d2), wz€[0, ), A€F.
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We assume that the system is stable, i.e. assumption (A.7) is satisfied.
Now let us examine the remaining assumptions. Let us note that,
for f e €,(%),

[o,{o)f (y)P(t, @, dy) = exp [ —4t]f((x—2),) +o(1),

where (a), denotes max(a, 0), tends to f(x) uniformly on [0, co).

Since, for f(x)g(2) €%, (%),

[I(t, (@,2), a&x AL)f(&,0) = [ P(t, 3, AE)F(E) rac1i(2)9(2),
F [0,00)
one can show that (A.1), (A.2), and (A.3) are fulfilled.

Assumptions (A.4), (A.5), and (A.6) are satisfied, since the family
of transient functions and distributions of intervals between successive
regenerative points do not depend on the state x € Z.

Let W~ (WT) denote the stationary distribution of the Markov chain
W(z,;)(W(z,)) for n=1,2,... Then using the Corollary to Theorem 5
we get

(10)  LmP(W () <y[W(0) = o) = W([0,y])
=4 [(1—F@®) [WH@e)P({, 2 [0,y)d, y>0,

{0,00)

it= [ (1—F(a)da,
24

R
where *

and P(¢t, =, [0, y]) is given in [10], p. 79.
Now we apply Theorem 6. We need to know A (P)W. First we calculate
A(P)W((y, )) for y >0, where P'(t,x,A) =y (x—1),. We have

1 ,
AP (@9, o) = wlimZ( [ W@P (1, , (v, ) = W1y, o))
(AN [0;00)

1 d

= w-{xgx;(W((y +1, 00)) —W((y, oo>)). =gy ", )

(here w-lim M, ((y, o)) = M((y, o)) is taken at points of continuity
t—>o0
of M((y, o))). Hence
1
APV (g, ) = wimZ( [ W@nP(t,, 0, <) -W(y, <)
[0,00)

=W-lim(%( f W (d2)P'(¢, o, (4, oo))exp[—lzt]——W((y,OO)))-l—
[0, 00).

10
t
+ A, exp[ —A.t] f W(dx)Kz((y—w—l—t, oo))+exp[—lzt] P(—))

. t
[0,00)
d .
=@‘W((?/7 00))—12W((y, °°))+12W*Kz((y7 °°))
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Now, using Theorem 6, we obtain
d
(1) = W((y, o)+ AW Ey (9, ) = 1T ((5, o)

= L(W((9, 00) =W+ ((y, ))).

Let us note that if 4, = 0, we obtain the queueing system GI/G/1.
Then formula (10) reduces to

(12)  HmP(W)<yIW(0) =a) =4, [ (1—F(®)W*([0,y+1])dt
00 g+ ’

and equation (11) takes the form

d
(13) Wy, =) = (W ((y, o) —W*((y, ), y>o0.
The solution of (13) is
(14) W((y, ) = eW™+K,((y, =), y>0,
where
By(10,8) = i [Fully, )y, 57 = [Eallg, )ay amd o=2.
0 0

The results (12) and (14) were obtained earlier by Takécs in [11]
and [12], respectively.

References
\

[1] J.Azema, M. Duflo and D. Revuz, Mesure invariante des processus de Markov
recurrents, Sem. Col. Prob. Fac. Sci., Strasbourg, III, Springer Verlag, Lecture
Notes in Math. 88 (1968), p. 22-33.

[2] V. V. Baklan (B. B. Baknas), 9peoduseckas meopema 0a% MaAPKOGCKUT NpO-
yeccoe ¢ OuckpemHblM eMEUAMENbCMEOM CAYYAR, YKpP. Mar. Kyp. 19 (1967),
p- 123-126.

[83] J. W. Cohen, The single server queue, North Holland, Amsterdam 1969.

[4] E. B. Dynkin (E. B. [luiukus), Mapxosckue npoyeccer, Mockpa 1963.

[5] B.V.Gnedenko and N. N. Kovalenko (B. B. 'negenko u H. H. KoBa-
JeHKO), Beedenue ¢ meopuro maccosozo obcayncusanus, MockBa 1966.

[6] M. Jankiewicz and B. Kopocinski, Steady-state distributions of piecewise
Markov processes, Zastosow. Matem. 15 (1976), p. 25-32.

[7] I. Kopocinska and B. Kopocinski, Queueing systems with feedback, Bull.
Acad. Pol. Sci., Sér. math. astr. phys., 19 (1971), p. 397-401.

[81 — Queueing systems with mized input stream and feedback, Zastosow. Matem.
14 (1974), p. 177-1883. _

[9] A. Kuczura, Piecewise Markov processes, SIAM J. Appl. Math. 24 (1973),
p. 169-181. .

[10] N. U. Prabhu, Queues and inventories, New York 1965.



436 M. Jankiewicz and T. Rolski

[11] L. Takéacs, Investigation of waiting time problems by reduction to Markov pro-
cesses, Acta Math. Acad. Sci. Hungaricae 6 (1955), p. 101-130.

[12] — The limiting distribution of the virtual waiting time and the queue size for a sin-
gle-server queue with recurrent input and general service times, Sankhya, A 23
(1963), p. 91-100.

MATHEMATICAL INSTITUTE
UNIVERSITY OF WROCLAW
50-33¢ WROCLAW

Received on 16. 10. 1975

MARIA JANKIEWICZ i T. ROLSKI (Wroclaw)

PROCESY PRZEDZIALAMI MARKOWA Z OGOLNA PRZESTRZENIA FAZOWA

STRESZCZENIE

Kuczura [9] wprowadzil pojecie procesu przedzialami Markowa z dyskretng
przestrzenia fazowa. W niniejszej pracy rozpatruje si¢ procesy przedziatami Markowa,
przyjmujace wartosci z pewnego podzbioru n-wymiarowej przestrzeni euklidesowej 27.
Badane 83 zwiazki miedzy stacjonarnymi rozkladami pewnych wlozonych tancuchéw
Markowa a rozkladem stacjonarnym procesu. Rezultaty pracy zastosowano do analizy
systemu kolejkowego GIX -+ MY G/1.



