ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XII1, 3 (1971)

W. KLONECKI (Wroclaw)

ON IDENTIFIABILITY OF MIXTURES OF COMPOSED
POISSON DISTRIBUTIONS *

1. Introduction. In this paper we investigate conditions under which
various subfamilies of a family of mixtures (to be defined in section 2)
of composed Poisson distributions are identifiable in the sense of Teicher
[7]. The theorem asserts that every subfamily consisting of mixtures
of composed Poisson distributions of the same degree is identifiable while
the whole family is not. This theorem is an extention of a result of Feller [1],
stating that the family of mixtures of Poisson distributions is identi-
fiable. We also present a complete proof of a theorem already published
[2], [3] that a subfamily restricted to mixtures generated by distribu-
tions with entire characteristic functions is identifiable.

The problem of identifiability of mixtures of composed Poisson
distributions originated from studying the possibility of distinguishing
between two categories of hypothetical chance mechanisms of carcinoge-
nesis considered by Neyman and Scott [4].

2. Preliminaries and summary. Let S with or without affixes stand
for the class of all distributions S(y) satisfying the conditions S(0) = 0
and §(0+) < 1. Let S; and S, denote the subclasses of S of distributions
with entire and analytic characteristic functions, respectively. Finally,
the symbol C will be used to denote the class of all sequences of non-

negative numbers ¢ = {¢,}, with 0 < ) ¢; < oo. Moreover, let C, stand
k=1

for the subclass of C composed of sequences ¢ = {¢,} such that ¢y > 0
and ¢, = 0 for k> N and Cj for the subclass of C composed of finite
sequences.

The family of mixtures considered is defined as follows. Let ¢
= {ck}eC. Then

Plle) —oxpf Yat-1), <1,
k=1
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represents a generating function of a probability distribution, say {p(k|c)},
called composed Poisson distribution [5]. If ceCy, then the composed
Poisson distribution corresponding to ¢ is said to be of degree N. Let

F,={{p(k|yc)} : ye[0, o0)}, where yc = {yc,}.

The distribution
(1) p(k|8,¢c) = [ p(klye)dS(y), k=0,1,...,
0

where SeS, is called a mixture (or an S-mixture of F,), and § — the mizing
distribution. Now for S, =« S and C, = C we define

K(S,, C)) = {{p(kl‘S’ c)} : 8eSy, OECO}-

Clearly, K(S,, C,) is the class of, say, S,-mixtures of all composed
Poisson distributions corresponding to all ce¢C,. In particular, K(S, C,)
is the family of mixtures of Poisson distributions.

Following Teicher [7], the family K(S,, C,) is said to be identifiable
(with respect to S, and C,) if mapping (1) of S, x C, — K(S,, C,) is one-
to-one.

The subject of study is to determine subsets S, =« S and C, =« C
so that the resulting family of mixtures K(S,, C,) is identifiable in the
above-mentioned sense.

To exclude a trivial case of non-identifiability we assume throughout

the paper that C consists of sequences ¢ = {¢,} such that }'¢, = 1.
k=1

An intuitive discription of the considered problem of identifiability
may be as follows. Consider chance occurrences, to be called “arrivals”,
occurring in accordance with a Poisson process with expectation y > 0.
Suppose that y is subject to a distribution S(y)eS, = S. Next suppose
that at each arrival come into existence 1, 2, ... particles with probabili-
ties ¢;, ¢y, ..., respectively, where {¢;}¢C, =< C. Then the number of
particles X (7') produced within time interval [0,7) has a composed
Poisson distribution. The question asked is under what assumptions
on S, and C, the distribution of X (T) determines uniquely S(y) and
{c¢.}, given an arbitrary T > 0.

In this paper the following two theorems are proved:

THEOREM 1. For N =1,2,... the families K(S, Cy), consisting
of mixtures of composed Poisson distributions of degree N, are identifiable.

THEOREM 2. The family K(Sg, Cy), consisting of Sp mixtures of
composed Poisson distributions of finite degree, is tidentifiable.
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For N =1, Theorem 1 states that the family of mixtures of Poisson
distributions is identifiable. This result is due to Feller [1]. The assertion
of Theorem 2 fails if the restriction to Sg-mixtures is omitted. This is
shown in Example 2. The family K(Sg, C) consisting of Sg-mixtures
of composed Poisson distributions of finite and infinite degree is non-
identifiable [2].

3. The lemmas. The chief instrument in the proof of Theorems 1
and 2 is the following lemmas:

LeEmMMA 1. Let ay+if;,, where j,k =1,2, be complex numbers
such that

(2) ﬂn = ﬂzz =0
and
(3) O3y < Ogg-
Then
(4) [ erentinias, y) = [ entiag,y), j=1,2,
0 0
implies
(5) ay; < G

provided that the integrals appearing in (4) exist.
Proof. From (2) and (4) it follows that

o0 (o2

[ e¢nas,(y) = [ ¢tut#nlgg,(y).
Hence 0 0
®) [ emas,(y) < [ enas,y).
Similarly, ° 0
(7) f 2 d8, (y) < fe”“w 81 (y)-
> b

Combining (3), (6) and (7), we get

00

[ euds,(y) <

0

e’12d8, (y),

which implies (5).
We shall also need Lemmas 2-6.
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LEMMA 2. If Ny;< N, and —n< @, <, then it is possible to find
a value y such that

(8) sin(x;+ Noy) = 0

and

(9) ecos(x,+N,y) >0, cosN,y<O,
where ¢ =1 if —n<a,<7wm and ¢ = —1 ¢f o, ==

Proof. We give the following rule for the selection of y: take y
= (28w —x,)/N,. For s select an integer so that

10 2+1 <£(2 )<2—{—3
(10) v 21: ¥, ST— X, v 5™

while v is an integer.
In case —=n < x, < m, the rules for the selection of s are as follows:
(I) 2N,< N,. Put v = 0. Then there exists aninteger s satisfying (10).
(II) 2N, = N,. Put v =1. Then s = 3 satisfies (10).
(IIT) 2N, > N,. Let

. — 4(w+3)n—2x,
v (aw+3)m ]

w=20,1,...

If a, ,<N,/N,<a,, then v =w-+1 and s =w+4 satisfy (10).

In case #, = &, the corresponding conditions (8) and (9) are equi-
valent to sinN,y =0, cosN,y >0 and cosN,y <0, which are condi-
tions (8) and (9) with 0 substituted for z,. Consequently, in case z, = m,
the assertion follows from the above.

LEMMA 3. Let N> 2 and let 1 < k<< N—1. Furiher, let ¢, =1 or
—1, while j = 1, 2. Then there exists a value y such that

(11) sinNy =0,
(12) cosNy =1,
(13) g,cosky > 0,
(14) e 8inky > 0.

Proof. Put y = 2sn/N, where s is an integer. Then (11) and (12)
hold. To show that (13) and (14) can be simultaneously satisfied, it is
sufficient to show that there exist integers s and » such that:

(i) if ¢ = ¢, =1, then 0<Sk/N—-v< }:

(i) if &, = —e; = —1, then } < sk/N—v<}:

(iii) if &y = e, = —1, then I<sk/N—v< §;

(iv) if g = —ey =1, then < sk/N—v<1.
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In cases (i) and (iv), the existence of the integers s and v is obvious.
In the two other cases and N > 4, the assertion follows from a well known
theorem on number theory [6]. For N =2 and N =3 the existence
of integers s and v is easily checked.

LEMMA 4. Let N > 2 and let 1 < k< N —1. Further,let ¢ =1 or —1.
Then there exists a value y such that

(15) sinNy = 0,
(16) cosNy =1,
a7 esinky > 0.

Proof. If we select y = 2sn/N, where s is an integer, then condi-
tions (15) and (15) are satisfied. Moreover, (17) also holds provided we
can select s so that if ¢ =1, then 0 < sk/N—v< }, and if ¢ = —1,
then } < sk/N —v < 1, where v is an arbitrary integer. As in Lemma 3,
the existence of integers s and v, satisfying the above inequalities, follows
from the well-known theorem on number theory mentioned in the proof
of Lemma 3.

LEMMA 5. Let N =2m+1 and let 1 < k< N—1. Further, let ¢ =1
or —1. Then one can select a value y so that

(18) sinNy =0,
(19) cosNy = —1,
(20) ecosky > 0.
Proof. In case ¢ = —1, the rule for the selection of y is as follows.

For 1 < k< mput y = sn/N, where s is an odd integer such that N/2k
< 8 < 3N/2k.

Because 3N/2k— N/[2k > 2 for 1< k< m, there must be at least
one odd integer s lying between these limits. For m 41 < k < 2m, take
Y = n/N. For ¢ =1, the existence of a value y satisfying conditions
(18)-(19) follows from the above and from the relation

skm cos 8(N—FKk)n
COS N = N ’

which holds whenever s is odd.

The next lemma, which is of some independent interest, will be
used to prove Theorem 2.

LEMMA 6. For j = 1,2 let P;(2) stand for a polynomial of degree at

least 1 with arbitrary, real or complex coefficients, subject to the restriction
Pi(1) = 0. Let 8;¢Sg, j =1,2.
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Then
(21) [ ¢71@as,(y) = [ eFd8,(y)
0 0

if and only if there exists a positive number a such that

(22) Py(2) = aPy(2)
and
(23) 8, (y/a) = 8:(y).

Proof. Identities (22) and (23) imply (21) immediately. To prove
the converse proposition we first show that (21) and (22) imply (23).
Indeed, (21) reduces then to

fesz(z)dsl(y/a) = f e”PZ(Z)dsz(?/)-
0 0
Consequently, for all complex =z,

[ e#d8,(y/a) = [ ¢as.(y).

By the uniqueness theorem on characteristic functions we conclude
that (23) holds.

To show that (21) implies (22) we suppose that there exist polyno-
mials P, (2) and P,(2) both of degree at least 1 and both vanishing at z = 1,
and that there exist distributions §; and 8, belonging to S, such that
(21) holds but not (22).

For j = 1,2 let

Nj
P;(2) = 2 (@ + ibjz) 2.
k=0
+¢siny), we obtain
Ny Ny
Pi(z) = 2 7,08 (T, + ky) + 4 Z %1 8in (@, + ky)
k=0 k=0

or, for short,
Pi(2) = 4;(2)+iB;(2), j=1,2,

where A4;(z) and B;(2) represent the real and the imaginary part of P;(z),
respectively. For further use let us note that for j =1, 2

Ai(z) = r,-N’_rNicos(ijj-l-N,-y) + o (rM9).
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For the sake of brevity we shall write x; = Tix;y j =1, 2. Without
loss of generality we may assume that N, < Ny, 2, =0, —n< 2, <=
and 7y, =1,§ =1, 2.

First we show that (21) implies N, = N,. This will be proved by
showing that in case N, < N, there would exist two numbers 2, and z,
such that g;, = B;(2;) and a;; = 4;(2;), where j, k =1, 2, would satisfy
all assumptions of Lemma 1 and the inequality a,, < a,; which is oppo-
site to the assertion of Lemma 1.

We shall show this by using the fact that the asymptotes of B,(z) = 0
and B,(z) = 0 are parallel to the corresponding asymptotes of Im (2V1) = 0
and Im{[(cosw,+isinz,)2"2] = 0, respectively. Thus, in particular, one
of the asymptotes of B,(2) = 0 is parallel to the asymptote ¥y = 0 and
one of the asymptotes of B,(2) = 0 is parallel to the asymptote y = y,,
where y, is a value that satisfies conditions (8) and (9) of Lemma 2. De-
noting, for j =1, 2, by 2; = z{r(y;), y;) points satisfying equation B;(2)
. = 0, we conclude from the above that by selecting y, and y, sufficiently
close to 0 and y,, respectively, the radius r(y;) may be as large-as we please.

Since ; = 0 and r, = r, = 7, we have
(24) A,(z) = rV1eos Ny +o(r™),

A, (2) = rV2cos (@, + Noy) 4 o (rV2).

- In view of (24) it follows from the above that for y, sufficiently close

to 0 there exist solutions 2, = 2,(r(¥,), ¥;) of B,(2) = 0 such that 0 < A4,(z,).

Moreover, it follows from Lemma 2 that in case —n < z, < =, there

exist solutions z, = 2,(r(ys), ¥s) of B,(2) = 0 such that A4,(z,) < 0 and
4,(2,) < A,(2,), whatever 2z, might be.

On the other hand, it follows from Lemma 2 that in case z, = m,
there exist solutions 2, of B,(2) = 0.and 2, of B,(2) = 0 such that 4,(=2,)
may be arbitrarily large and A,(z,), 4.(2,) and A,(2,) may be arbitrarily
small.

This implies that one can select two numbers 2, and 2, so that B;(z;)
=0, j=1,2, and 4,(z,) < 4;(2;), while 4,(2,) < 4,(2,), which. gives
the desired contradiction with the assertion of Lemma 1. Thus we conclude
that the polynomials P,(z) and P,(2) must be of the same degree, say N.
Next we show that relation (21) implies z, = 0.

Let, respectively, z, = (r,(¥1), ¥1) and 2, = (r,(y,), y;) be solutions
of B,(2) = 0 and B,(2) = 0 such that r = r,(y,) = ro(y,). Here r may
be as large as we please by selecting y, and y, sufficiently close to, say, 0
and —z,/N, respectively.

Clearly,

A;(z5) — A;(21) = 1" [cos(@;+ Nyp) — cos(w;+ Nyy) 1+ o (7).
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Introducing the notation y; = (—a;+¢)/N, j =1,2, and using
the fact that z, = 0, we obtain

A,(2)—A44(2;5) = V[ cose; — cos (2, — &)1+ o(r")
and
A, (2) — Ay (2,) = rV[cosey,—cos(@,+ &)1+ o (rY).

If #, # 0, then for sufficiently small values ¢, and ¢, the expressions
in the parentheses are positive and, at the same time, » may be arbitrarily
large. This implies that there exist z; and 2, such that B;(z;) = 0,j =1, 2,
while A4,(2.) < 4,(2;) and A,(2,) < 4,(2,).

Putting oy = 4;(2) and g; = B;(s), where j,k =1,2, we note
a contradiction with Lemma 1 again. Thus P, (2) and P,(2) are polynomials
with coefficients of the highest power of z equal to 1.

Finally, to prove that P,(2) = P,(z), suppose, to the contrary, that
the first N — k coefficients of P,(2) and P,(z) are identical, where ¥ =1, ...
eeoy N—1, but a,,+ b, # ay+tby,.

To show that a,, = a,,, we substitute r(cosy +¢siny) instead of z
and observe that

(25) A;()—A,(2) =" [(@ — @) COS Ky — (byf — by sinky ] + o(r*).

To arrive at a contradiction with Lemma 1 we nqed to show that
there exist numbers y, and ¥, depending upon the a;’s and the b;’s
such that

(26) sin Ny, = sin Ny, = 0,

(27) (@ — ag) cO8 kYo — (byy — by )sinky, > 0
and

(28) (@1 — g1.) COS kYoo — (b1 — by ) 8in kYoo < 0.

Suppose first that a,, # a,,. The existence of y, and ¥, follows from
Lemma 3. The &’s, appearing in Lemma 3, are selected depending upon
the a’s and the b’s as shown in Table 1.

TABLE 1
Ay > Aoy a1 < Ao
bix > bag by < bag ' bk > b bk < bax
Yo Yoo Yo Yoo Yo | Yoo Yo | Yoo
& 1 —1 1 —1 —1 1 —1 ' 1
€ —1 1 1 -1 —1 1 1 —1
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This in view of (25) implies that under the assumption a, # a,
there exist solutions of B,(2) = 0 such that 0 < 4,(2) < A,(2) and solu-
tions of B,(z) = 0 such that 0 < 4,(z) < 4,(2).

Consequently, there exist numbers 2, and 2, such that a; = Re[P;(2;)]
and B;. = Im[P;(2)], j = 1, 2, satisfy conditions (2) and (3) of Lemma 1
and, moreover, the inequality «,, > a;,, which is opposite to assertion
(6) of Lemma 1. This contradiction leads to the conclusion that a,, = a,.

Now suppose that b,, # b,,, while a,, = a,,. In this case and for
N > 2, the existence of numbers y, and ¥, satisfying inequalities (26)
to (28) follows from Lemma 4. Here ¢ must be selected as shown in Table 2.

TABLE 2
b1k > by bk < bag
Yo Yoo Yo Yoo
€ -1 1 1 —1

Now, similarly as above, we can show that in case N > 2 the assump-
tion b,, # b,, leads to a contradiction with assertion (5) of Lemma 1.
For N = 2, we easily conclude by differentiating both sides of (21) with
respect to z and by using the assumption P,(1) = P,(1) = 0 that b,; = b,,.
Thus, for ¥ =1,..., N, we have

(29) .+ 1hy, = @+ iy,

Since by assumption P,(1) = P,(1), relation (29) holds also for
k = 0. This completes the proof of Lemma 6.

If the assumption that S;eSg, j =1, 2, is omitted, then Lemma 6
is not valid as is shown in the following example:

Example 1. Let 8, and S, be distributions corresponding to the
characteristic functions f,(2) = (1—2)"* and f,(2) = (1 —2)"% respec-
tively. Clearly, 8;eS,—Sg, where j =1,2.

Putting P;(z) = (¢2—2)°+1 and P,(2) = (#—2)*+1, we obtain
J1[P1(2)] = f5[P,(2)], which shows that (21) holds without (22) and (23)
being true.

4. Proofs of the theorems.

(i) Theorem 1. Suppose that for some N > 1 the family K(S, Cy)
is non-identifiable, i.e. there exist two sequences ¢, = {¢;,} and ¢; = {¢y}
belonging to Cy and two distributions 8, and S, belonging to S, where
C, # ¢, and (or) 8, # 8, such that

(30) [ ereenag,(y) = [ eTCDagy(y), |uj<1.
0 0



268 W. Klonecki

Let

(31) n(2) = [ @TEVaS(y), §=1,2,

0
and let D; be the set where the integral given by (31) exists. Without
loss of generality we may assume that ¢,y = ¢,y = 1. Assumption (30)
implies that #,(z) and #,(2) coincide on the interval I = {z:2 = u, |[u| < 1}..
Because the interval I is contained in the interior of D = D, n D,, it
follows from a well-known theorem on analytic functions that for zeD

(32) M1(2) = 7(2).

In case N is odd, the proof of Theorem 1 is similar to the proof of
Lemma 6 except that an extra care must be taken in selecting 2, and z,
so that both these numbers belong to D. Putting P;(2) = P(z|¢;),j = 1,2,
and using the notation introduced in section 2, we can write

(33) A,(2)—A,(2) = rk(clk_%k)COSkf‘I‘*‘o('rk);

where ¢,,, # ¢, while 1 < k<< N —1.

In view of (33) and of Lemma 5, equation B;(z) =0, j = 1 2, has
solutions z; = 2;(r(y;), y;) with »; = 7;(y;) arb1tra.r11y large and such tha.t
for j = 1’ A,(2) < 44(z) < 07 and, for j =2, A,(2,) < 4,(2.) < O.

Consequently, one can select 2, and 2, so that

(34) B, (2,) = By(2) =0
and
(35) A,(25) < Ay (2) = Aa(2) < Ay (7).

Putting again a; = A4,(z,) and B; = B;(z,) for j =1,2, we see
that (34) and (35) contradict Lemma 1. Because of this contradiction
and because of the assumption P,(1) = P,(1), we conclude that for
0<k<N-1 we have ¢, = ¢, or, equivalently, that P,(z) = P,(z),
contrary to the assumption.

Now we proceed to consider the case where N is even. In view of (30),
relation P,(u,) = P,(u,) must imply P,(u,) = P,(u,) and vice versa,
provided that «, and u, are real numbers belonging to the set ), where
both integrals exist. This implies that P,(u) = P,(u).

(ii) Theorem 2. If K(Sjy, Cy) were non-identifiable, then there
would exist two sequences ¢, = {¢;} and e, = {c,;} belonging to Cjg
and two distributions S, and S, belonging to S, where ¢, # ¢, and
(or) 8, # 8, such that {p(k|S,, e,)} = {p(k|S;,e,)}. Consequently,
for |u|<1

0 00

(36) J ertenag, (y) = [ et as,(y).

0 0
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Since 8, and 8§, are entire, relation (21) holds with P;(z) = P(u|¢;),
where j = 1, 2, in the whole complex plane. Since P,(1) = P,(1) = 0.
it follows from Lemma 6 that

B7)  Dlenw—1) =a ey —1) and  Sy(y|e) = 8(),
k k

where a > 0. But ) ¢, = }'¢,, =1, so that (37) implies « = 1. Hence
k k

¢, =¢, and 8, = 8,, contrary to the assumption. This contradiction
completes the proof of Theorem 2.

The following example shows that the family K(S, Cy) is non-iden-
tifiable, indicating that the assertion of Theorem 2 is not valid without
the assumption that the mixing distributions are entire.

Example 2. Let S; and S, be probability distributions with densities

24 p2
pl(m)=1(ab:_ )

(1 —cosbxr)e ™ for x>0,

while p,(z) =0 for <0, and
pe(®) = e *“le  for x>0,

while p,(z) = 0 for # < 0, respectively. Here a > 0 and ¢ > 0. The cha-
racteristic functions of §; and 8, are equal to

00

1 1 1
38) Fi(z) =| ¢ =
(38)  Fy(2) of ) = T T et ®) 1—ea—)
and
(39) F,(2) = fw e”d8,(y) = -
2 J 2\ 1—z/e ’

respectively.

Clearly, 8;¢S,—8g, j =1, 2.

Now let

P,(2) =Q(x)—Q(1),
P,(2) = Q(2)[Q*(») + b2 —Q (1) [@*(1) + b2],
Where Q(z) = (¢ —d)(z—e)2. Note that P,(1) = P,(1) = 0. Letting d > 1,
we put a = —Q(1) and ¢ = —@Q(1)[@*(1)+b*]. Then, in view of (38)
and (39), we obtain F,[P,(2)] = F,[P,(2)]. Hence
(40) [ #1198, (y) = [ T as,(y),
0 0

where both integrals exist for all ze{z: Re @(2) < 0}.
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It is clear that (40) implies the non-identifiability of K(S, Cz) pro-
vided exp{P,(2)} and exp {P,(¢)} can be, under the condition d > 1, gene-
rating functions of composed Poisson distributions. This is shown by
proving that there exist real numbers b, ¢ and d > 1 such that all coeffi-
cients of both derivatives P{(z) and P{’(z) are non-negative.

First we find

P,(0) =¢q, = —ed,
PY(0) = q, = €2+ 2ed,
PP(0) = g, = —2(2e+d),
PP(0) = g = 3!
and
P (0) = 3¢5, + V1,
PP (0) = 3(2¢04; + G0 ) + b2,
PP (0) = 3(2¢} +6904: 9.+ 65 ¢5) + b2 ¢,
PP (0) = 6(643¢, + 4904105+ 390 33),
PP (0) = 30(3¢: 45+ 2409292+ 241 65),
P (0) = 30(3¢; + 124,295+ 2¢,93) »
P((0) = 30(21¢3¢5+ 144, 43),
PP (0) = 2580¢,42.

Now obgerve that
(41) PP0)y=0, PP0)=0,
PP0)=0, PPO0)=0, PP0)=>0,

provided that ¢, > 0 and ¢, > 0.
Because of inequalities

PW(0 PO (0 P
lim [_ : ( )]>0, lim 22 ¢ )->0, lim [— 2 (0)]>0,

S5 4 3
é—>—00 € e—>—00 € e—>—00 €

we can select ¢ so small that in addition to the inequalities ¢, > 0 and
q. > 0 the following inequalities hold:

(42) PP0)>0, PPO)>0 and PE0)>0.
Finally, for any fixed d > 1 and e¢ we can select b so large that
(43) PP0)>0 and PP0)>0.

Combining inequalities (41) to (43), we obtain the desired result.
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W. KLONECKI (Wroelaw)

IDENTYFIKOWALNOSC MIESZANYCH ZLOZONYCH ROZKLADOW POISSONA

STRESZCZENIE

Niech
N
gn(ulen, y) = exp {y ck(“k—I)},
k=1
gdzie
N
¥Y>0, Yep,=1, Jui< 1 oraz ey = {¢, ..., en}, przy czym ¢; > 0 i ey > 0, bedzie

k=1
funkcja tworzaea nieujemnej zmiennej losowej o wartosciach calkowitych. Niech 8
bedzie dystrybuants okreSlong na przedziale [0, co) i niezdegenerowana w zerze.
Wéwezas

Gyu|8,ey) = [ gndS(y)
0

jest funkeja tworzaca mieszanego zlozonego rozkladu Poissona. Jeden z przedstawio-
nych wynik6w orzeka, ze dla kazdego ustalonego N > 1 funkcja G wyznacza jedno-
Znacznie ¢y oraz S. Wynik ten uogélnia twierdzenie Fellera [1], Ze rodzina mieszanych
rozklad6w Poissona jest identyfikowalna. Inny wynik pokazuje, ze Gy = Gy nie
Pocigga za sobg réwnoci N = M. Ponadto, w pracy przedstawiony jest kompletny
dowéd twierdzenia, opublikowanego w [2] i [3], orzekajacego, ze jezeli funkcja charak-
terystyczna dystrybuanty S jest calkowita, to Gy wyznacza tez jednoznacznie N.
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