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ON k-REGULAR GRAPHS CONTAINING
(k—1)-REGULAR SUBGRAPHS

Abstract. A well-known open problem in graph theory is: which k-regular simple graphs
Contain a (k— 1)-regular subgraph (John R. Reay, 1979). This problem is solved for k-regular
Simple graphs on k+3 vertices. Also the number of labeled k-regular simple graphs on a given
Dumber of vertices is calculated. Using this, a lower bound for the number of k-regular simple
8raphs with (k—1)-regular subgraph is established.

1. Introduction. In [1], p. 246, the following conjecture is stated: Every
4-regular simple graph contains a 3-regular subgraph. It is called the Berge—
Sayer Conjecture; see also [5]-[7] and [10]. Recently this problem has been
Solved by Limin [4]. The general statement, each k-regular simple graph
Contains a (k—1)-regular subgraph, is not true in general. For instance, the
®omplete 3-partite graph on 9 vertices T3, is 6-regular but contains no
S-regular subgraph (see below). This example disproves Limin’s conjecture
(see [4], p. 135). So the question is: which k-regular simple graphs have a
k—1)-regular subgraph? In Section 2 it is shown that all k-regular simple
8raphs on k+3 vertices contain a (k—1)-regular subgraph on k+2 vertices,
SXcept precisely the k-regular complete multi-partite graphs on k+ 3 vertices.
0 Section 3 the number of k-regular graphs on p vertices is calculated; it
S@rves as a tool in partly solving the main question of this paper. |

2. k-regularity on k + 3 vertices. For 2-regular simple graphs the existence
of I-regular subgraphs is obvious. It is well known that the graph itself or its
°°_mplement or both are Hamiltonian provided the graph is regular. From
1}“3 it follows that each k-regular simple graph on p vertices with p even and
IP S k < p—1 contains a (k— 1)-regular subgraph on p vertices. Clearly, each

Tegular simple graph on p =k+1 vertices with p odd and k> 2 is a
Omplete graph K, ., and, therefore, contains a (k—1)-regular subgraph on
P~1 vertices, namely K;. '

. _Let k and m be integers > 2. The complete m-partite graph on km
rgr‘tl'Ces T 4m 18 an (m—1)k-regular simple graph without an (m—=1)k—1)-
“Bular subgraph on km—1 vertices. |
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THEOREM 1. Let k be even = 4. Each k-regular simple graph G on p =
k+3 vertices contains a (k—1)-regular subgraph on p—1 (= k+2) vertices
iff G # Tpy3m With k=3m—3 and m=3,5,17, ...

Proof. Take k even > 4 and let G be a k-regular simple graph on k+3
vertices. Then the complement G of G is a 2-regular simple graph on k+3
vertices. If G is not a complete multi-partite graph with precisely three
vertices in all the components of G, it follows that G has at least one
component with 4 or more vertices. Let v, be a vertex in a component of G
with at least 4 vertices and let v, and v, be adjacent to v, in G. Deleting the
vertex v, and its k edges in G gives a graph with all vertices having degree
k—1, except v, and v,. As v; and v, are not adjacent in G, they are adjacent
in G. So leaving out the edge v, v, in G yields a (k— 1)-regular subgraph of G
on k+2 vertices. _

Note that there are always at least 4 vertices that can be taken out
obtaining a (k—1)-regular subgraph. The necessity follows from a previous
remark.

3. The number of k-regular simple graphs. By N(p; k) we denote the
number of k-regular simple graphs on p vertices, k > 1, p > 2. For the sake
of clarity we remark that the number N (p; k) does not count only the non-
isomorphic graphs but all k-regular simple “configurations” on p fixed
vertices. The number of all simple graphs with degree sequence (d,, ..., d,) 18
denoted by N(d,, ..., d,). Hence

N(p; k)= N(k, k, ..., k).

N*(,, ..., d,) denotes the number of “locally restricted” simple graphs with

degree sequence d,, ..., d,, which means that each labeled vertex has fix

degree (see [3]). Clearly, not all constant degree sequences are graphlc, 694
(p, k) = 0 for k = p = 2. Define

N@©,...,0=1

Erdds and Gallai (see, e.g., [1]) have given necessary and sufficient condmonﬁ
for a degree sequence to be graphic. Using this we find that, for p > k+1
=3, N(p; k) =0 iff both p and k are odd integers. By

N(Sl; dl’ ey Sq; dq)

we mean

N, ....dy,....d

v

51 times sqtimes
where s; is called the order of d;, 1 <i<gq.

THEOREM 2. For any positive degree sequence (d,, ..., d;)) with d; of ordet
ssi=1,...,9 and s;+ ... +s, = p) the following hold: '
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‘1. The “equality

p! :
_l——_TN*(Sl; dl’ ceny Sq, dq)
Sl....Sq.

N(sl;dl, ooy Sgidg) =

is satisfied.
2 For 0<o;<s;, o+ ... +a,=d; and a; <s,:

N*(sl;dlﬁ"" sq; dq)
s;—1\/s, Sy .

= : e N* I;O, - _l;d 3 - s

alz (0‘1 )(dz) (otq) ( 51—y 1> S2—%3

ay;di—1, ..., 0, d,—1).

dy, ..., Sg—0,; d, 4

Proof. 1. There are s, vertices with degree d, that have to be divided

Over p vertices. This gives ( p) possibilities. There are s, vertices with degree
S1

d, for the remaining p—s, vertices, so we have (p 1) possibilities, etc.

S2

(p (p—s,— cee=Sg-1) _ p!
s;) S spl...8,!

2. In case of ‘N*, the degree of each vertex is fixed. Consider
| N*(Sl;dl,...,sq; dq)

and some vertex v° with degree d,. This vertex v° is connected with d, other
Vertices. Say v° is connected with &, vertices of degree d; (0 < a, <s,), with
%, vertices of degree d, (0 < a, <5,), ..., and with a, vertices of degree d,
(0<ozq<sq), @+ ... +o, =d,. Taking away the d, edges of v° yields a
8raph with the degree sequence

Clearly,

(1,0, 5y —ay—1; dy, s3—0y; dy, .oy 5,—0; dg, 2y di—1, ..., a, d,—1).

-1 ' ’ | : .
There are (p 4 ) possibilities the vertex v° is connected with the other
: . ,
Vertices. One can easily check that

(p—l)_ 5 (s,—l)(sz) (sq)
dl TYseenlly %y x . a‘!
f?" €ach «, ..., a, = 0 such that a; <sy, a3 <35,, ..., o, <s, and a; + ...
ta, = d,. This gives the desired result.

- For k-regular simple graphs on p vertices we have N(p; k) = N*(p; k),
be‘-"ause all vertices have the same degree.
























