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MINIMAX CHECKING OF REPLACEABLE UNITS

1. FORMULATION OF THE MODEL

In this paper the following situation is considered: At the moment
t = 0 a system begins to work. The time till the failure of the system
(life time) is a random variable X with the unknown distribution funec-
tion F(t). It is assumed that a system failure is known only by inspecting.
Immediately after discovery of a failure, but at least after T > 0 time
units, the system is replaced by a new one with the same distribution of
life time. The inspection-replacement process is continued unlimitedly.
Each replacement requires a fixed time d and a fixed cost ¢, (d, ¢, = 0).
Each inspection entails a fixed cost ¢, and occurs at & negligible time.
On the other hand, a downtime ¢ of the system (i.e. & time between the
system failure and the starting of the replaced system) gives rise to a
cost (%), where v(t) =0 for <0, and v(?) is continuous and strictly
increasing in ¢, 0 <t << oo.

2. BOUNDED WORKING TIME OF THE SYSTEM (T < o)

2.1. Derivation of the minimax loss. Let S,={t,}, 0<t,<t, <... <1,
< T, n< oo, be an inspection strategy (shortly, strategy) prescribing
exactly = inspections (at a time ?, occurs the k-th inspection, if no
failure of the system has been before detected). For fixed 8,, the ¢, are
assumed to be constant numbers. Especially, the strategy S, means “no
inspection”. If the number » of inspections is unessential, instead of S,
we only write 8. Let y be the set of all inspection strategies. To derivate
the minimax criterion we define functions u,(z,y), 0 <2<y, by

_ (kt+1)es+o(y—a+d)+e,

1) (2, y) ——

, k=0,1,2, ...

Let 8, = {t,}. In case where #, < X <., <T (I'< X), we have
the loss (X ,fk +1) (4 (T, T)) per unit time. Therefore, the mathe-
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matical expectation of the unconditional loss per unit time is given by

n—1 k41 T
@) K8, )= [ w(t, tus)dP0)+ [w, (2, T)AF () +
k=01, tn

Uy (T, T) (L—F(T +0)).

In (2) the intervals of integration are open on the left and closed

on the right. Since ¥ is unknown, we consider the expression

E(8,) = sup K(8,, ).
{F; F(+0)=0}

We will find a strategy 8* = {#;} such that
K(8*) = inf K(S,).

S,ney-,
n=0,1,...

We call 8* a minimax inspection sirategy. A similar problem has
been treated in [3] (see also [1], [2] and [4]).

THEOREM 1. For any strategy S, = {t,}, there holds

K(8,) =max{ max u,(%, tesa)s Up_1(lsy 1)}
k=0,1,...,n—1

Proof. Evidently, the functions u,(z,y), ¥ =0,1,..., have the
following property:

(a) for fixed y >0, wu,(x,y) are strictly monotone decreasing in
z, 0<2<Y.
Let

Wo = Ug(0,81)y, Wy = Uy(by, %)y ..oy
Wp_y = Up_1(y_1y1%,) Wy, = Up_y (8, T), Wy 41 =u, (T, T),
and let m be defined by

wm - max w‘-.
§=0,1,...,n

Further, let us write
P = F(hy1 +0)—F(4+0), k=0,1,...,n,
Pny1 = 1—F(T+0).
Then, in view of (a) and w, > w,_;, according to (2), we have

n+1

K(8,, F) < Z WP < Wy

k=0
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We define now F,(t) by
0, <1y,

F,(t) =
w (! 1, t,>t.

F,(t) satisfies K(S,, F,) = w,,. Hence the proof of the theorem
is complete.

2.2. Existence and computation of a minimax inspection strategy.
In the sequel we assume that v(f) is strictly convex in [0, oo) (1). For
fixed @, u,(z,y) are functions in y, # <y, which we denote by Upe, 2 (Y)-
It holds )

y+d
dt . (9) _ of W(y—o+d)—vt—a)]dt—(kE+1)e,—e,
dy (y +d)?

In virtue of the convekity of v(?), the integral

v+d
[ Wy—s+d)—v (t—a)]dt
0

is strictly increasing in v.

Hence the function u,,(y) has exactly one minimum (). Let
my(z) be defined by wu,.[m;(x)] = M;(»). Then wu,,(y), ¥ =0,1,...,
have the following property:

(b) For # < my(x), the functions w, .(y) are strictly monotone de-
creasing in [@, my(w)). For my(w) < co, the functions u ,(y) are strictly
monotone increasing in [my(w), o).

In view of (b), in case m,(0) > T, 8, is the minimax strategy. Hence,
in the sequel we assume that 0 < m,y(0) < 7. Evidently, for 0 < #, < 2, < oo,
k=0,1,..., we have

(3) Upe,zy (Y) > Upeg, (4), @< Y.

Now we assume that a strategy 8, = {f;} has for » > 1 the following
property:
(4) mk(tk)<tk+l7 k =0,1,...,’l;b—1.

LeMMA 1. For any Sey, 8 # 8,, there ewvists a strategy 8. which satis-
fies condition (4) and such that K(8) < K(8).

() For concave, especially linear v(t), ¢> 0, the function u,(0, ) decreases
with increasing #, 0 < #. Therefore, in this case §, is the minimax strategy. In view
of the assumed continuity of »(t), the convexity of »(t) implies that v (¢) is also differen-
tiable.
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The straightforward proof of this lemma is omitted (see [3]).

In view of this lemma we can assume, without loss of - generality,
that a minimax strategy S*=£ 8, satisfies condition (4). For its precise
characterization we need, however, further definitions.

We consider the system of equations

(5) Wi (s Bo1) = U1 rpny Trra) s k=0,1,2,...

By means of (5), a sequence {t,} is recursively generated by each
t, > 0. It breaks off at ¢, if the m-th equation of (5) (¥ = m —1) has no
solution ¢,.; with %, <t,,,<< oo, m < co. We denote by ¢(,) = {t;}
the sequence generated by means of ¢, which satisfies conditions (4) for
E=0,1,...,m—1. The functions ¥ =t (¢), given by ¢(t,) = {t},
are continuous and, by (a), (b) and (3), strictly increasing in t,, ¢, € [my(0), T).
These properties of ¢, = #,(¢;) we denote by (M).

Furthermore, we define a strategy S(¢,) = {¢;, ¢, ..., %,} to be the
partial sequence of ¢(t,) = {t;}, S(t,) < ¢(¢,), which breaks off at ¢, if
either the n-th equation of (5) has no solution ¢, , with ¢, < ?,., < T and
mn(tn) < tn+l7 or if Up—1 (tn—l’ tn) = un—l(tn7 -T)'

Definition. A strategy 8, = {t;} is called admissible if
(0, 8y) = Uy (b1, %) = ..o = Up_1(by1y U) = Uy (80 T).

LeEMMA 2. There exists an admissible strategy S(&,) for my(0) <, < T.

Proof. We consider the functions u,(f) and u,(f, T') for a variable
t, $e[my(0), T]. In case where wuy(my(0), T) < ty,(my(0)), by (a) and (b)
any strategy 8; = {t,}, mo(0) < #, < T, is admissible. Hence let uy(m,(0), T)
> Uy 0(my(0)). In this case the functions u,,(f) and u,(t, T) have exactly
one point of intersection in (me(0), T). Let uyo(f) = %y(Z, T). But then
again each strategy 8, = {t,}, ¢ <t, < T, is admissible. In view of (M),
the lemma immediately implies the following

COROLLARY. There ewists a smallest number t, = t;, m,(0) <t} < T,
with the property that the strategy S (t;) 18 admissible.

THEOREM 2. 8(87) =: {i{, 13, ..., ln} I8 @ minimax inspection sirategy.

Proof. Next we consider the case

(6) uo(O, f";) = ul(tf, t;) = e = un‘—l(t:*—l’ t;‘) > '“’n‘—l(t;" T)-

In consequence of (M), under this assumption we have 7 = m,(0) > 0.
Otherwise, there would exist a number #,, m,(0) < £, < ] such that S(Z,)
will also be an admissible strategy; this contradicts to the definition of ;.
Therefore, under condition (6) the theorem is already proved.
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Now let
(1) (0, 87) = u (85, 83) = oo = Upa_1(Bpa_y, Upa) = Upo_1(lhe, T).

Then, by (M), for all m, 1 <m < n*, there exist admissible strat-
egies S, := {t{™} which satisfy the conditions

o (0, B™) = wu, (3™, &4M) = ... = Upy_, (B, ) = w,_, (™, T).

As in [3], it can be proved that, for any strategy S,,, K (§m) < K(8,,)
always holds. Further, for 1< m < m'<n* we have the inequality
#m™) < #™, and hence K(8,)< K(8,) It follows that K(8%)< K(§,)
< K (8,,)- Therefore, to complete the proof of the theorem, we have still
to show that, for any strategy S, with n >n* K(S,.) < K(8,) always
holds.

Suppose that there exists a strategy S, = {t;}, n >n*, satisfying
condition (4) and such that

(8) K(S,) < K(S}.).

From (8) we obtain %,(0, ¢,) < %,(0, #;), and hence we have t,< &
(mo(0) < ?,). Starting from this, in view of the inequalities wu,(t;, t,,,)
< ug(hy thy1), by induction we get 4, <, k =1,2,...,n" Let ..,
< e <tpayyiry, ¥=0. It follows from

Upe 1 (tz*—n t:') = ’“n*—l(t:m T) > Upeyy(lynyyy bariyin)

that the equation wu._,(fys_y, fns) = Upye(fhs, theyy) has a solution &,
With fhe < Mpe(fne) < peyy < T, tpa < tpe,,. We consider the strategy
Spepr = {t1, 65, ..., tneyy} which has the property

Uy (t:t’ t:‘-_'_]) < Wps (t:;t_l_l, T).

Therefore, by (M), there exists a strategy S,..,:= {;}, &1 >,
which satisfies econditions (5) with » = n*+1 and

(0, 87) = Uy (81, 82) = oo = Upaiy(bney Tro 1) = Unayy(Errsry T)y

such that K(8,)< K(Sps.1). In case of n >n*41 we infer because
of (M) and the definition of ¢, by repeated application of this argument,
that under assumption (8) there exists a strategy S, := {f;} such that
conditions (5), the equations

uy(0, 1) = Uy (8, 83) = oov = Uy (Ty_y t;ol) = Uy (tyy T)
and, moreover, the inequality
(9) K(8,)< K(8,)

are satisfied.
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From (9), by induction we get &, < ¢, as above. It follows that
-K(Sn) = un—l(tn7 T) > un—l(t;&’i T) = K(S;z’)’

contradictory to (9). Hence inequality (8) is not possible for n > n'.
Thus the proof of the theorem is complete.

By reason of the proof of theorem 2, for the numerical computation
of the minimax strategy S;. = S(f}) only the case m,(0) < ] is interest-
ing. Then, after the computation of 8(m,(0)), we immediately decide
whether 8(m,(0)) (me(0) > 0) is admissible (in this case S (mq(0)) is the
minimax strategy). Now let 0 < my(0) < #;. Then 8. = {f;} satisfies (7).
Hence, in view of theorem 2 and (M), we get S;. by the following proce-
dure. Starting from m,(0), we let increase #, as soon as in S({) =
{t1, %3, ..., t,} for the first time un_l(t\n_l, t,) = Up_1(t,, T). The resulting
strategy is minimax.

Example. Let ¢; = 10, ¢, = 100, v(t) =, d = 0, and T = 200.
Then we have the minimax inspection times t} = m,(0) = 10.5, & = 35.5,
t; =173, {; = 122.5, and #; = 183. The corresponding minimax loss is
given by K(8*)=21. In this case we have wuu_;(f,, T) = u,(183, 200)
=22< K(8%.

3. UNBOUNDED WORKING TIME OF THE SYSTEM (T = o)

To have a significant difference between the cases T < oo and T' = oo,
we assume that

(10) limﬂ = 00

We define now an inspection strategy S as an unbounded increasing
sequence of numbers § = {{;}, 0 < {; < {, < ... The expected value K (S, F)
of the loss cost per unit time, by the application of 8 = {t,}, is given by

0o 41

1
K(8, F) =,;7+lﬂ}kf [(E+1) 61 +0(bys — b4 @) +051aF (1),

Analogously as in the proof of theorem 1, we obtain N

K(S) = sup K(8,F)= sup u(l, t.)-
{F,F(40)=0} k=0,1,...

In view of (10), there exists a ?, > m,(0) such that the sequence of
numbers ¢(¢;) is unlimitedly increasing. Especially, in virtue of (M),
there exists a smallest number ¢, = #; with this property. Then, for £, > {],
the corresponding sequences ¢(f,) are inspection strategies which we
again denote by S(t,).
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THEOREM 3. 8* := 8(&) : = {#} is a minimaz inspection strategy.

Proof. Suppose that there exists a strategy S = {t,} satisfying
K(8)< K(8%). Analogously as in section 2, we can assume, without
loss of gemerality, that S satisfies condition (4) for ¥ =0,1,2,... We
can also assume, without loss of generality, the existence of the limit

. k
a:=lim —.
k—oo Uk
Further let
* : k
a = lim .
k—o0 tk

The inequality K(8)< K(S8*) = a*¢ yields a< o*. Hence there
exists a » >0 with the property ¢ <?,. The inequalities w,(t, #.,)
< u(thy tpy1) imply, however, ¢, < & for all ¥ = 1,2, ... From this con-
tradiction, the assertion of the theorem follows.
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F. BEICHELT (Freiberg, NRD)

MINIMAKSOWA INSPEKCJA ELEMENTOW W SYSTEMACH Z ODNOWA

STRESZCZENIE

‘W pracy przedstawiony jest matematyczny model optymalnej inspekeji w sys-
temach z odnows, gdy czas zycia elementéw nie jest znany. Dowodzi si¢ pewnej
specyficznej wlasnoéci minimaksowe]j strategii inspekcji, pozwalajgcej wyznaczyé
te strategie w sposéb numeryezny.



