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A MINIMAX PROPERTY OF TRANSLATION INVARIANT
ESTIMATORS FOR VARIANCE COMPONENTS

For random or mixed linear models appearing in analysis of variance
OVA) it has been common practice to estimate the variances of the
inIn effects by equating the mean squares in the ANOVA table to
the’_r €Xpectations. Estimates obtained in this way are unbiased and have
Va:rla,nces independent of the possibly unknown vector of means. This
Droperty goes back to the so-called translation invariance of these esti-
Mates which are functions of the residuals only. Recently, a great variety
€W approaches to the estimation of variance and covariance compo-
"ents hag been proposed by Rao [13], [14], Lamotte [10], [11], Kleffe
04 Pincyg [8], [9], not to mention the increasing amount of literature
2OI§eemed with maximum likelihood approaches. In the field of unbiased
a:tlmation it has been shown that optimal non-invariant estimators
au:ﬁ'ys depend on the vector of expectations. Therefore, Pincys and t.he
dig Or suggested to apply, in some sense, Bayes estimates using a prior
n tl_‘lbution over the unknown fixed effects. The use of invariant esti-
pra'tlon functions neglects this kind of prior information and, as will be
e Ov.e(_l’ 18 a minimax decigion. Tn order to obtain this result we develop
c:Dh_en; formulag for Bayes estimates among all unbiased estimators and

Wider the limiting behaviour of these estimates if prior information
collds %0 zero. This approach is based on the idea of the co-MINQUE

%Dt introduced by Focke and Dewess [2].

L Normal case. First we consider a normsl linear regression model
y = XB+e,
8 8 known (N X k)-matrix and the crror vector & is assumed to
Covariance structure
Eee' = 0,V,+... +0,V, =V(0), 6eT,

in thknown 8ymmetric (N x N)-matrices V;,i= 1, ..., p. We are interested
g Ofe ‘Nknown parameter vector 6 = (0, ..., 0,)" which varies in a subset
the Euclidean p-space R? given by all 6 € R? such that V(6) becomes
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positive-definite. But the family of normal distributions induced by (1)
and (2), i.e.

{Pyy,=N(XB,V(0)|BeR" 0T},

depends additionally on the unknown vector of means X pg. Thereforé
we will use prior information about 8. We assume that a distribution
of the mean vector X 8 is independent of ¢ and normal with expectation g
and covariance matrix @. Then, for fixed g and @, the family of mal'gina‘l
distributions for ¥ is given by

{Ploc =g, V(0)+G) | 6T}
A measurable function y = f(y) is called unbiased for y = f’ 6 if
(3) f&dP},',e =y forall BeRF0eT.

Pincus [12], as one of many authors, investigated the linear space d
of all unbiasedly estimable linear parametric functions y = f’6. Ther®”
fore, we refer to the following lemma without proof.

LEMMA 1. Let P = X(X'X)* X' and let Q be a (p x p)-matriz §io"
by the elements q; = tx[V,;V,—PV,PV,], ¢,j =1,...,p. Then

(i) I is the set of all y = f’ 6 with f € R(Q), i.e. f i8 a member of th
linear space gener ated by the columns of Q (column space).

(ii) R(Q) s invariant with respect to linear regular transformations of
model (1).
By (3), for any unbiased estimation we have
(4) fvar;'zdP" = f(;‘z—y)2dP'g,,,G = var .
8,0 0,0,G .
7 if

v« i8 8aid to be a Bayes unbiased estimator (BAUE) for y at b,

Var y, < var y
00,0,0 001010

for all 7 satistying (3). It is easily verified that a BAUE at 0, coigcig;:
with the locally minimum variance unbiased estimator at (6o, 9) if
congidered family of distributions is

{PY, =N(g,V(6)+@)| 0T, gecR(X)},

where R(X) denotes the column space of X, and @ is fixed but suc ’
R(X) is an invariant subspace with respect to the linear mapping ¢ -
i.e. @ = XK X’ with an arbitrary non-negative-definite symmetric matrix
THEOREM 1. Assume thal, for 0, € T,
V=V, Pr=XXVX)*XV,
4; = (V+@ (V=P V. Py)(V+G) '

p thaf

(8)
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Wd let A be a solution of the linear equation system

6 . .

( ) S}u =f, S =((sij))7 844 =tl‘[A;Vj], Q,J=1,...,p.
Then
(1) A BAUE for y =f'0€eI at 6,e 5 is uniquely determined by

Vs =2 Ai(y' Ay —2y' Ayg).
;
(il) The variance (4) of ;7,. at 0, is 2f' 8~ f for an arbitrary generalized
zn'verse of S.

Remark. § is singular if dimI' < p but, in that case, (7) is indepen-
of a special solution A of (6).

Proof. First we verify the consistency of (6) for f e R(Q). For this
transform y into § = (V+@)""2y such that § follows the linear
del (1), (2) with

{~(ierrx ana Vi=(V+@) ™V (V+&)™™, i=1,..,p.

QBY (ii) of Lemma 1, fe R(Q) implies fe R(Q) and the elements
are

Where Gy = te[V,V,—PV.PV]], 4,j=1,...,p,

(7)

deng

We
Ing

P=(V4+@) X (X (V4+@) 1 X)* X (V46)2.
vﬁrif];shlg the representation @ = XKX’ and P, X = X, it is easy to
(8)

) (V+&) Py = Pp(V+&)7,

PV, = (V+@™ P, V,(V+&)",
o On the other hand, by (8) and (9) we have
AUeV)) = (7,0, (V4 6)P, VP, (T +6)7 V,(V +6)714] — gy

=@ which proves the existence of 1 € R? with §1 = f for
- Because of X’A4,X = 0 we obtain

Be = Sakyduy = 3 a4V (0)+ X8 X)

= D' 2tr[4,V(0)] = Y 2tr[4,V;16, = Y f6,=7,
i [ X i

a a
My, i unbiaged.

I '} -~
°f Rao Temaing to gshow the optimality of y.. By the well-known theorem
(see, e.g., [14]), 7. is a BAUE for y at 6, € 7 iff

cov (f(y)’ );*) =0
00,9,G
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for all measurable functions f(y) with expectation constant zero and

varf(y) < oo.
09,9,G

Since g can be expressed as ¢ = Xg, we have
(10) By ,6f(¥)a [ fly)exp{ —3y—Xg)(V(6)+6) ' (y—Xg)}dy =0

for all § € R, § € 7. The left-hand side of (10) is & function of 7 and 0
and its derivatives (if they exist) have to vanish. But, using

-1
var f(y) < oo and o(V(0)+6)
69,9,.G 0 0{ 6

it is easy to verify the differentiability and the possibility of fﬂtf’r'
changing the differentiation and integration in equation (10). Differentiatio”
with respect to 0, yields

[ @—XgY (V+ @ V(T +@) (g —Xg)aPY 6 =0, & =1,.27

= —(V+@ 'V (V+E) s

which is equivalent to
(11) cov (£(9), ¥'(V+ @) V(V+@) 'y —2¢' (V+@) V(T +@)'9) = ¥

00,0,0

i 3 1, --.7p‘

Now, forming the second-order partial derivatives with respect ¥
the components of g, in the same way we obtain

<ov (£9), ¥ (V -+ T XV +6) 'y =20V +6) LIV +6)79) 0
0>9>

iyj =1,k
d
where X; denotes the ¢-th column of X. Since P, V,Py can be expl‘esﬁg’n
by a linear combination of all matrices X, X, 4, =1, ..., k, this equa®
implies
OCOVG(f(y), Y (V+@) Py V,Py(V+&) 'y —
0,0.

—29'(V+@) ' Py V. Pp(V+6)7'y)= O
Subtracting this equation from (11), by (5) we obtain
cov (f(y)7 ?/’Aiy_2g’-Af?/) =0, ¢=1,...,,p.

09,9,G -
Hence 7, is BAUE of its expectation for all A € R?. The estimator )’:‘
is also unique and, therefore, independent of the special solution .0 8
In order to prove statement (ii) we use the fact that BAUE Oo{ncl 8]
with the Bayes quadratic unbiased estimator (BAQUE) developed 11 .[Ont
where a BAQUE was obtained to be the unique solution of a linear equa.ﬁl
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T.herefore, it i3 known that the p matrices A? — V24,7 with A,
§Iven in (5) satisty

A;+A}G+GAY =V, —PVP, i=1,...,p,
Vhere ¢ — V-12gy -1~ Multiplying by V2 on both sides we get
VA, V+VAGH-GAV = V,—P,V, Py,
multiplying by 4; and forming traces, we obtain
tr[A;VA;V]+2tr[4,VA;G] = tx[V,4,].
Using the formula
var (y' Ay —2y' AXB) = 2tr[AVAV]+4tr[AVAQ]

90 s ”’G

g., in [5]) we get

anq hence,

(Droved’ e.

var y. =2 D AA;(tr[A, VA, V]+2tr[4; VA,Q))

60.0,G 6.7

=2 ) AAte[4,V;] = 24 84.
1.9

But, ag stated earlier, we can choose 4 = 8~ f, which implies

var y4 = 2f'S”f.
09,9.G
eﬂtimBa{- Theorem 1, a BAUE belongs to the class of. quadratic plus 'linefju'
e lit 00 functions. Such estimators have extenswe'zly been stufiled. in
i ea,riiratl-u. (see, e.g., [3], [6], [8], and [9]) and various properties, like
Y, invariance with respect to linear regular transformations of
e o a8 well as necessary and sufficient cond%tions for the in(?epend'—
Gate g, BAUE from g, G or even 0 have been derl.ved. Now, we investi-
Mg behaviour of BAUE if the prior distribution for X4 tends to an
o eope-r one reflecting the case of no information about g. Therefo.re,
ﬁnit.y Dsider g, sequcnce of covariance matrices r@, where r tends to in-
if (Defihition. An estimation function y = f(y) is called invariant
Xp) = f(y) for all B € R
v&riaere are some degencrated cases of models (1), (2) for which no
I‘I - ut Unbiaged estimator for y = f'0 exists. Introducing the sgbspace
Dl‘o;e 1 of all invariantly and unbiasedly estimable linear functions we
- 0 [8] the following

MMA 2. Let M = I—P and let Q; be the (p X p)-mairix with elemenis
q,!j=tl‘[MV,-MV,-], i,Jj=1,...,p.
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Then
I'={yel'|feR(Q)}-
Now we are able to formulate the main result of this section.
THEOREM 2. Assume that y € I} and y., are BAUE at O, T for
PP~ N (g, r@) with rank[X] = rank[G]. Then
(i) The limit
Yoo = ﬁmf*.r

r—+>0

exists, 18 independent of G and g, and coincides with the locally mingmum
variance unbiased estimator among all invariant estimation functions

(12) oo = D My (MVM)**V(MVH)*y,
where A = (Ayy ...y }.p)' 8 a solution of the equation

(13) D A[(MVM*V(MVM©*V]=f;, j=1,..,p.

i=1
(i) Pu.o0 18 @ mindmaw estimation function, i.e. a solution of the eqwt'i‘m
(14) Minsupvary = SUP VaT Px, e,
eU peRrk 8,0 BeRk £:%
where U stands for the class of all unbiased estimation functions.

Proof. Theorem 1 shows that 7, , depends on r by (V+7G)™" only”
Using G = XKX' we get

, 1 -1,
(V4+r@)' =V 1-VvVlX (X V“X+7K“ xXv?,
which tends to
VIV IX( XV X)XV = (MVM)*

as r tends to infinity. Substituting the limit in (5) we obtain (12) becat®
of (MVM)*X = 0. The linear equation system (6) takes the form of (13)'
But 7, ., given by (12) and (13) was proved in [7] to be the locally minim"
variance invariant unbiased estimator which exists for all y € I'y.

In order to prove (ii) we note that
(15) fva{ry*,,de—> Varys , a8 f-—> 0o
8,69 6o X
and the limit is independent of B. Following Theorem A.3.43 in [4] 7*
is a solution of (14) and minimax.

of
The assumption that P? is normal is necessary only for the (.}lasslus
all unbiased estimators. Restricting considerations to quadratic P
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linear ¢
1 ps g

Stimation functions, we see that all results derived remain valid
not normal. As we will see in the next section, similar results are
lid if y does not follow a normal distribution.
2. Non-normal models. The purpose of this section is to consider
q}la’d.ratic estimation functions but without reference to the normal
;m‘lbUtion of y. In general, besides more specific cases described in the
noflllel, the probability measure P? is assumed to be such that there is
the Quadratic plus linear form p = y’Ay+a’y with vary = 0,. except
o c?’s‘? 4 = 0and a = 0. This regularity condition ensures th.e uniqueness
for Minimum variance quadratic unbiased estimators and is, e.g:, mgt
. P_I'Obabﬂity measures being equivalent to the Lebesgue measure in RB~.
terally, the variance of an arbitrary quadratic form also depends on
rezam‘fments of order three and four of y. To avoid a lot of complications
*ding these moments we therefore restrict our attention to models
¥ th © (1), where all relations between error components a.re* produced
N kne ©Xperimental design. In other words, ¢ is assumed to be Us*, where U
sithat(?wn’ and ¢* has only independently distributed (?omponents._ This
inde 100 appears for all variance component models with stochastically
[6],pendent random effects. As in the previous papers (see, e.g., [5],

(16 and [97) we consider the linear model
) y=Xp+Uc

i

(k"il known (¥ x k)-matrix X, known (N X s)-matrix U and unknown

zarol)-Vector B of fixed effects. The s x 1 error vector ¢* has expectation
a

Covariance structure
Wh ES*G*I = 01F1+ cee +0pr’ 069—,
va,r?e _Fu ---y F,, are known s x s diagonal matrices and 6 = (0y, ..., 6,)’
for €3 in gn open set I < RP such that V = UF(0) U’ is positive-definite
deman 0 € 7. Since we are only working with moments, it is enough to
gto(;;nd .th&t the components of ¢* behave up to moments of order four like
Astically independent random variables. Then introducing
EG: 2 = 0'%,

i

We Eep® = p;oi, Ee! =y0f, 1=1,..,8,
a’ . . 3
for ™ able to calculate the variances of unbiased quadratic plus linear

angq  (see [9]). The class of all these estimators will be denoted by Q
* € Q is said to be BAQUE at 0, € 7 if

fva;rg?.dPﬂgfvarﬁdP" for all y € Q.
8,9 8,6
finiteT © ensure the existence of these integrals we assume P* to have
Moments of order one and two:

9= [XpaP* and @ = [XpFXdP’—gq.



452 J. Kleffe

The following theorem is a special case of a more general one, pl'Oved
in [9] )

THEOREM 3. Let, for 6, T, F = F(6,), V = UFU’, V, = UF;U"
t=1,...,p,

71
P=F2( e )‘usz(I‘u'“’l‘s),-
Ve

(i) BAQUE exists for all y € I, and p, =y A*y+a*y is BAQUE J'
y=f0 iff ,
(17) 2(VA*V—PVA*VP)+2(MVA*G+GA*V M)+ UI'[Diag U'A*UIU

—PUI'[Diag U A*U]UP +
+ 2(U[DiagU' A*gu’|U' —PU[Diag U'A*gu] U'P) + U[Diag U'a*p'] U-
—PU[DiagU'a*y'1UP esp{V,—PV,P, i =1,...,0}

(18) M(Va*+2VA*g+ U[Diag U'A*Ulu) =0,
(19) tr[A*Vi] =fn t=1,..,D,
(20) X'A*X, a¥X = 0.

(ii) BAQUE s unique and invariant with respect to linear reguld’
transformations of model (16).

The symbol sp{V;—PV,P, ¢ =1,..., p} stands for the linear §pa©?
of the matrices involved, and [DlagG] is used for the matrix obtail®
in equating all non-diagonal elements of C to zero.

As in Section 1, we first develop explicit expressions for A* and ¢
similar to (7). Two lemmas are necessary to solve the system of linea”
equations given in Theorem 3.

LEMMA 3. For arbitrary symmeiric non-negative-definite G with GP = G
the linear equatton sysiem

(21) A+4+A4G+G4A =Q, X'AX =0
has the unique solution
=I+H'QI+@¢7".

Proof. PG = G and X'AX = 0 imply GAG = 0, and the left‘hﬁ"nd
gide of (21) turns out to be (I +@)A(I+@). The proof will be complete
we observe that I-+@ is regular.

LEMMA 4. Equations (17), (18), and (20) have unique solutions (Ais &
for each V,—PV P on the right-hand side of (17).

Proof. Let us assume that there exists V*esp{V,,..
that the left-hand side of (17) equals V*—PV*P for two djﬁeren

&)

AR
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241* » @) and (4, a7) also satistying (18) and (20). Then the right-hand
e of (17) vanishes for D — A*— A% and d = a; —a, (at least one of D

" ldd is different from zero), and multiplication by D and forming traces
eld :

@2) 242 [DVDV]+4tr[DVDE]+1r [[Diag UDUII'[Diag U'DU]] +

+2¢'DU[Diag U'DU]u+ d'U[Diag U'DUJu = 0.

by DDﬁa(;Irl[(ll gl also so%ve (18), and m1_11tip]ication by ¢’ from the right and
e left yields, after forming traces,

(23) tr[DVdg']4-2tr[DVDgg']+¢'DU[Diag U'DU]p = 0

" that (22) and (23) together imply

@) ot (DYDY + 4tr [DVD (@ +gg')]+ 24 [DVag+

+4¢'DU[Diag U'DU]u+d'U[Diag U'DU]u = 0.

On the other hand, by multiplication of (18) by @’ from the left we get
#Va+2d'VDg+d'U[Diag U'DU]u = 0

"d the sum of (24) and (25) gives

(25)

[var(y' Dy +d'y)dP* =0

p’oo
ac .
%0rding to formula 3.2 in [6]. It follows that

var (y'Dy+d'y) =0
Bo-%

Or
the :‘t lfsa.st one f, € R¥, which contradicts our assumption concerning
ang ;nSIdered class of distributions for y. In order to verify that (17), (18),
We (20) have % solution for each V;— PV P on the right-hand side of (17)

USe the fact that

dimsp{V,—PV,P, i =1, ...,p} = &imTl
125 10 be
nd (g,

(Iin tl}e 8equel we use a not very familiar calculus and introduce:

(ii) diag 4 to be the vector formed by the diagonal elements of A4,

anq B) ’ amard’s product A*B = ((a;b;)) of two matrices 4 = ((ay))
= ((by)) of the same type.

We have )

€qual to the number of linearly independent solutions of (17), (18),

(26)
diag ADB’ = (AxB)diagD

Or arhit
anq r};_lmry matrices 4, B and any diagonal matrix D appropriate to 4
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THEOREM 4. Let V = UF(0,) U’ be regqular and put
W=U(V+&)'U, W=U(V+&'P,U,
Z=UMVM)*U, R=WsW—-W«W, T =I-—Zruu'.

Moreover, let Q; be the s X s diagonal matriz with diagonal elements
given by

(27)

1 1
dJa,gQ: =(I+§-RT) Rdia,gF,-, ‘i=1’”.,p’

and let A = (4, ..., A,;)" be a solution of the linear equation system

P
(28) D awlQiF] =2f;, j=1,...,p.
i=1
Then BAQULE for y = f'0 takes the form
P
Ll 7 U 1 ’ '] )
(29) y=21¢ (y Ay —2g A.-y—quIU(MVM)"y),
i=1
where
1
(30) A4; = §(V+G)_IQ¢(V+G)",
(31) Q; = UD,U —P,UD,U'Py,
1 1 . '
(32) D; = Fi— - I'Qi + - [DiagZQ; pp'].

Proof. Regularity of V implies R(M) — R(MVM). Then, multi-
plying (18) by U’ (MV M)* from the left, we get

Ua*"+2UA%) = Z[Diag UA*U]u.

Using this result we can write the last two terms together in (17)
in the form

U|DiagZ [Diag U'A*Uluy'| U' — PU [DiagZ [Diag U'A* U] up’| U'P.
In this way we get an equation for A* not including a*. Solving thi®
equation is the main part of the proof. We use the invariance of BAQ

with respect to regular transformations. Therefore, we first consider
a special case V = I, where the equation of interest takes the form

(33) 2(A+AG+GQA)+UTI'DiagU'AU]U’ —PUI'[DiagU'AU]U'P—
— U|DiagZ [Diag U'AU]pup'| U’ — PU|DiagZ [Diag U'AUlup'| U'P
= ) )(V,—PV.P)

(the asterisk of A is dropped for simplicity). According to Lemma 4
equation (33) has a unique solution A; for each V;—PV,P on the right-
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haFld side and, furthermore, it can easily be seen from (33) that there
©Xists a diagonal matrix D; with

(34) 2(4,+4,6+GA,) = UD,U’'—PUD,U'P.
By (31) (for V = I) we obtain (30) with the help of Lemma 3.

Further, by (27), (30), and (31) we get
L 4

Now put @7 = [Diag U’A,U]. Applying (30) and (31) to (33) we obtain
(36 «, 1 e 1 g 1 : * 7
) @ ++5 UIQ; U~ - PUIQ; U'P— — U[DiagZQ; pu'10" +

1
+ 5 PU[DiagZ@Q} uu'1UP = V,—PV,P.

. Multiplication by U’(I+&)~' and by its transposed matrix on both
Sides yields

B7) @y % [Diag WI'Q,W]— %- [Diag WI'Q! W]—
1 . . * ' 1 s TEF A x
— 5 [Diag W [Diag 2QF up'IW] + - [Diag W [Diag 2@} up'17]

= [DiagWF,W —-WFW]
I we only compare the diagonal elements on both sides. Applying the

;’Dera,tor “diag” to this equation we obtain a usual linear equation system
OT the vector diagQ! in the form

1 . —_—
(38) {I+ 5 (WeW —TP4T7)(I'— Zs W’)} diagQ! = (W+W — Wi )diagF,
T, in terms used in Theorem 4 (for V = I),

(39) (I+ —;—RT)diagQ: = Rdiag F;.

an. Now, starting from an arbitrary solution diag@Q; of (39), by (31), (34),
tod (36) we can choose D, such as given by (32). However, it is necessary
8how thag A; given by (30), (31), and (32) really solves (33). In order
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to do this, for arbitrary diagQ; obtained from (39), making use of (37)
and (35), we derive

Q; = [DiagWD,W —WD,W] = 2[Diag U'A;U]

for D, given by (32).

Now, we obtain the desired result by substituting this expression
into (33). But (33) is known to have only one solution and A, is indeggndent
of the choice of Q] if there are different ones. Let us for a moment assume
(39) to have different solutions @}, and @,. It follows from

¢! = [Disg U4, U] = 5 [Disg U"(I+@)7'¢,(1+6) U]

that @,, differs from @,, and, by (30), also A, differs from 4;,. This contra-
dicts Lemma 4. Thus ] is unique and I+ % RT is regular.
The linear equation system (28) follows from (19) by

1 .
tr[4,V,] = te[Fy[Diag U'4,T]| = S-tr[Q} Fy].

In the general case V % I we apply the regular transformation V'.l/
to model (16) and obtain ¥ = I. Therefore, in all formulas appearing 1
Theorem 4 we have to substitute V by V= I, U by U = V27, G by &
Pby P=V""X(X'V'X)"X'V'?, and M by I—P. Routine com"
putations lead to the general expressions of Theorem 4 if we multiply
the obtained matrices A; by VY2 on both sides.

It remains to develop the linear term in (29). However, for knowl
A* = A, equation (18) is easily solved by

a, = —24,9— (MVM)*U[Diag U'A,Ulp = _2Ag——;-(MVM)+ uQ; v

Since V is regular, this solution is unique.

THEOREM 5. Assume that y € I'y and ., are BAQUE at 6,€ T for
PP~ N(g,rQ) with EXf =g and covXp =G, rank[G] —ra.nk[
Then

(i) The lemat
;'*,oo = limy*,r

r—>00

exists, 18 independent of @, and coincides with the locally minimum var ianc?

invariant quadratic unbiased estimator at 0, € I given by

(40) Fupo = 2 Af(y'(MVM)*‘UD‘U'(MVM)w— %u'@‘: U'(MVM>+”)’
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Where
1, 1
V=V(), D= Fi—’? FQ;+?[DlagZQ¢## 1,

Q: is a diagonal matriz with
diag@; = [I+(Z+Z)(I'—Z»pp"))" (Z+Z)diag F;,

Md A = (1, ..., A,)" 8 a solution of the linear equation system

2ntl@EI=f, §=1,..,p.

(i) 9, o 48 @ minimaz estimation function, i.e. a solution of the equation

min sup vary = sup vary, .
je@ PR 8,8 serk 8,0, *

‘ ’:l‘he proof follows along the same lines as that of Theorem 2 con-
Sidering the Limits

W, =U0(V+r@®)'U~>Z and W,=U(V+r@)'P,U—>0.

Expresgion (40) is the formal limit of (29) as r tends to infinity and
an be proved to exist and to be the locally minimum variance invariant
Quadratic unbiased estimator in starting from Theorem 3.7 in [6] and
Olving the corresponding equations as in the proof of Theorem 4.
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PEWNA WLASNOSC MINIMAKSOWA
ESTYMATOROW KOMPONENTOW WARIANCYJNYCH
NIEZMIENNICZYCH WZGLEDEM TRANSLAC)I

STRESZCZENIE

Rozwaza si¢ model y = zf+¢ Ee =0, Eee/ = 0,V,+ ... +0,V, i podal®
jawne wzory na estymatory (6;, ..., 6,) naleigce do pewnej klasy estymatoréw bayeso”
wekich. Klasa funkeji jest ograniczona do klasy estymatoré6w nieobcigzonych, gdy ¥
ma rozklad normalny, i do klasy nieobciazonych estymatoréw kwadratowych — w PO°
zostalych przypadkach. Informacja aprioryczna o niewiadomej f jest wykorzystan®
przy konstrukeji optymalnych funkeji estymujacych. Z wyprowadzonych wzoréw WJ-
nika, ze nieobciaZone estymatory niezmiennicze wzgledem translacji sg funkejam?
estymacji minimaksowej, gdy nie ma informacji o §.



