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MINIMAX CONTROL OF A STOCHASTIC SYSTEM WITH
DISTURBANCES BELONGING TO THE EXPONENTIAL FAMILY

1. In the paper a stochastic system defined by the equation (1) is
considered, where v, is a disturbance of the system at time n. It is supposed
that v, are independent and belong to the exponential family and that the
distribution of v, depends on the unknown parameter A. Let n be a
distribution of A. In the paper the exact analytical form of a minimax control
policy of the system is given under the supposition that = satisfies the
condition E,(A%) = m,. Some examples are presented.

The problem of determining of a Bayes control of stochastic system for
disturbances belonging to the exponential family was considered in [7] and
[9]. There are many papers concerning problems of filtration and control for
disturbances distributed normally [2]. Minimax problems of filtration and
control are not met often in the literature since determination of a minimax
strategy is often complicated [1], [5], [8]. In Sections 2 and 4 ptloblems of
determination of Bayes and minimax control are formulated and in Sections
3, 5, 6 their solutions are given, respectively.

2. Let us define the discrete linear system with additive disturbances
and exact observations

(1) Xp+1 = Xyt Up+ CUy, Xo = €,

where x, is the state variable, u, is the control, and v, v,, v,, ... are
independent random variables with the same distribution dependent on an
unknown parameter.

- In the next section the following problem is considered: Given the
Initial state e and the distribution n of the parameter choose a control
U,, n=0,1,..., N based on all available data

X, =(xq, X1, .-, Xo) and  U,_| = (ug, Uy, ..., U,_ ),
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such that

N
#a=E[Y (ix?+ku)|X,, Up_y] (5> 0, k; > 0)

reaches its minimum. If this is done we call u, a Bayes control for =.

3. Suppose that the random variables v, have the density p(v, ) with
respect to a o-finite measure u on R, where 4 is a parameter. We assume that
u is the Lebesgue measure or the counting measure. We suppose that the
random variables v, belong to the exponential family, i.e.

) p(v, 1) = S(v)exp[qA () +vB(4)],
where the parametrization is chosen to have

A'(2)
and it is assumed that
E,(v}) =q,A*+q,A+4q;

(see [4], [6].
We suppose that the parameter A has the a priori distribution © with the
density

(3) g(d; B, r) = C(B, r)B' (A exp[BA(A)+rB(4)],

AleAe B~ '(A,) where A, is the natural parameter space. When such an a
priori density is assigned to A then the object of filtering, to determine the
Bayes control, is to produce the a posteriori density for A after any new
observation of x. We change the control after obtaining the new data.

Having observed x,, the a posteriori density f (4| X,) of the parameter A
may be calculated according to the Bayes rule

p(v, A)g(4; B, r)
fp, Hg(4; B, r)di

A
__F (Aexp[(B+q) A(A)+(r+0v) B(4)]
(B'(A)exp[(B+q) A(A)+(r+v) B(A)]dA

S@AIX) S f(Alve =0v) =

=C(B+q, r+v)B'(Yexp[(B+q) A(A)+(r+v) B(A)]

=g(4; By, r1),
where

Br=B+q, ri=r+v,.
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This means that the a posteriori density of parameter 4 is of the same form
as the a priori density and only new parameters f,, r, should be computed.
Similarly, after x, is measured, the a posteriori density of 4 is

p(vn—la A)g('{a ﬁn—l’ rn—l)

J@IX) = [PCu-1s DG Buss ra- )
=C(Bu-1+4, a1 +0,-1) B (A)exp[(Br-1 +9) A (D) +
+(rn-1 +0,-1) B(4)]
= g(4; Ba, 1w
where
4) Bn=PBu-1+ds Tn=Tn-y1+0n_y.

Given X,, the conditional density of random variable v, is

(5) h(v| X,) = Jp(v, 2 g(A; Br, ra)dA
A
_ P, )g(A; Bu 1) _ S C(Bys 1)
B g()*a Bn+1’rn+l) C(Bn+q, r,,+v)'

Suppose that the moments of random variables v, for given X, are of the
form

(6) E(val X)) = Q"r,,
0 E@i|X,) = Q" ri+0%r,+0F

for some constants @, QF, 0%, QF" dependent on the parameter B.
Formulae (6) and (7) may be used to obtain

E(x,41]|X,) = E(ax,+u,+cv,| X,) = ax,+u,+cQ"r,,
E(rpe 11X = E(ra+0,l X) =1, +Q"r,,
@) E(x2,,1X,) = (ax, +u,)*+2cQ™ (ax, +u,) r,+c* Q" r7 + 0P r, + 0P,
E(Xps17ps 1| X,) = (@xp+up)r, + Q" (ax, +u,)r,+
+eQ™ri+c(QP ra+0% ra+09),
E(rasi|X,) =2 +20"r2+ QP r2+ 0P r, + 09
To find the Bayes control denote

N
Vo= min x,= min E[) (5;x?+kud)|X,, U,_,].

Uy ..., UN Uy UN
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Then

V, = min(sy x% + ky u3) = sy x%
uN

and the optimal uy = 0.

Moreover, by application of Bellman’s dynamic programming optimality
principle, we obtain

N
V;. = min E[Z (Sixi2+kiui2)le Un—l]
Upseo U i=n

N
=min[s,,x,f+k,,u,f+ min  E[ ) (s;x?+kud)lX,, U,,_,_]].

up Up 4 15--9UN i=n+1

Since

N
min E[ ¥ (sx?+kud)|X,, U.]

Uy 4 1renly i=n+1

N
= min E[E[ Y (sx?+kud)|Xps1, Up)| X0 Unoi]

Up+4 1>-08N i=n+1
= E(V;I+IIXm Un—l),
we obtain

(9) V,,=min[s,,x,?+k,,u3+E(V;,+1|X,,, Un—l)]'

To determine the Bayes control this yields the equation

0
2knun+aE(Vn+l|Xna Un— l) =0.

But, for given X, and U,_,, we have x,,, = u¥+ax,+cv,, what implies

(10) 2k,,u,’:‘+E(aV"“

axn+ 1

X", Un—l) = 0,

where u} is the Bayes control.
We show now that V, is of the form

(11 V,=A,x2+2B,x,ry,+C,r:+D,r,+G,.
For n= N this holds with A,=sy, B,=C,=D,=G,=0. Then,
assuming (11) to be true for n+1, we obtain

Vs 1

=2Ap41 Xn+1 1t 2By 1 Tney
axn+l
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Xm Un—l)

= 2An+1 (axn+1 +u:+CQ(") rn)+2Bn+1 (1 +Q(")) rn'
From (10) and (12) we have

kyu¥+ Ay q(@x,+uf+c0™r)+ B, (1+0™)r, =0

and by (8)

V,
(12) E(g n+1

xn+1

or

An+1a x _An+lcQ(")+Bn+l(Q(")+1) r
kn+An+1 " kn+An+1 "

(13) Uy =

Moreover, from (8) and (11) we get
(14)  E(Va+11Xp) = Api  EGa 1 | X)) +2Brs  E(Xpt 1 70 1| X )+
+Coi 1 Eral X))+ Dy E(rys 1| X))+ G,y
= Ay [(ax, +uF)? +2cQ™ (ax, +u*)r, +
+c2 QP+ 0P r+ Q)] +
+2B,.  [(1+0")(ax, +u¥) r,+c(Q™r2+ QP r2 + QP r, + O] +
+Cpr 1 [(A+Q™+ QM) r2 + 0P 1, + 0514+ Dy s 1+ Q™)+ G,y ;.

On the other hand, by (9) and (11), the same value may be expressed as
follows:

(15) EWV,4,1X,) = Ay x2+2B,x,r,+C,r}+D,r,+G,—5,x2—k,u*?.

By the substitution of (13) in place of u* in (14) and (15) and successive

comparison of terms containing x2, x,r,, rZ, r,, 1 we obtain the recursive

formulae

azk A +1
16 A = __"_"_,
( ) " Su+kn+An+1
(17) B — akn(CQ(") An+1+(1+Q("))Bn+1)
" kn+An+l ,

Co=c?Q Ay +20(Q"+ Q) By s +(14+20"+ Q1) Cpuy ~ 55— B,

Dn = Q(2n)(c2 An+1 +ZCBn+1+Cn+l)+(1 +Q("))Dn+l9
Gn = Q(3n)(6.2 An+1 +2CBn+1 +Cn+ 1)+Gn+1’

With the boundary conditions Ay = sy, By =Cy =Dy =Gy =0.
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Thus, all the coefficients A,, B,, C,, D, and G, can be computed
recursively and the exact analytical solution for the Bayes control u*, given
by (13), may be obtained. Notice that only A4, and B, are necessary for the
optimal control, the remaining constants are needed for the computation of
the Bayes risk V,.

Notice, that to determine the optimal control u¥ and the Bayes risk
V,, n=0,1,..., N, only the assumptions (6) and (7) and the equations (1)
and (4) are sufficient.

4. Let u, be a control. Sometimes we need the notion of a vector
U = (ug, 4y, ..., uy) which we call a control policy and denote by a capital
letter. Let R(A, U) be the risk connected with the control policy U when the
parameter is A

N
R(4,U) = E).[Z (Sizxiz'*'kiuiz)lxo],
i=0

where the expectation is taken with respect to the distribution of random
variables v, v,, ..., vy given by (2). Let I be a class of distributions n of
parameter A such that E,(A%) = m,. Let %(n, U) be the Bayes risk associated
with the distribution n and the control policy U

N
x(n, U)=E,(R(A, U))=E[ Y (six?+ku})|Xo].
i=0

Let D be the class of control policies U for which x(r, U) exists for each
nel'. A control Uy is called a minimax control policy if

sup % (n, Uy) = inf sup »(n, U).

rel UeD nel

In the next sections we look for minimax control policies.

5. Let u, be a control which is Bayes with respect to a distribution n of
parameter A defined by (3). Denote

N
R,=E; [ (six?+kur?)|X,, U,_,].
Let U* = (u}, ut, ..., u¥). Obviously,
(18) Ro = R(4, U*).
Moreover,

N
(19) R, =E,[} (s:x!+kiuf?)|X,, Ur-,]

N
=snx£+knu:2+El[El[ z (si2x52+kiu?2)|xn+1’ U::HXM U:—l]

i=n+1

=S,,X£+k,,u:2+E;_ [Rn+lle U:—l]'



Minimax control of a stochastic system 531

R(4, U*) can be determined from the equations (18) and (19). For any
control u, we have

Ey (Xns 11 X2) = E(aX, + sty + v, X,) = ax, +u, +cqd,
Ei(rn+11Xo) = E(ra+0,| X)) = 1,44,
E; (x4 11 Xp) = (@x,+u,)* +2(ax, +un) cqi+c?(qy A +9, 2+ 3),
Ei(Xps17ns 1] Xp) = (@X, +u) 1yt (ax, +u) gA+cqir, +c(qy A2 +95 A +43),
Ei(r2 ) X) =r2+2qr,A+q, A2 +q2 2 +45.
We prove that R, is of the form
(200 R, =a,x24+2b,x,ry4Car2+2d,x,A+e€,;A*+ 2, 1, A+
+gp Xyt hyr,+isA+j,.

For n = N this is satisfied with ay = sy, by = ... = jy = 0. Suppose that
(20) holds for n+1. By (19) it is sufficient to prove that there are constants
a,, ..., j, such that

(21) @, x2+2b, X1yt Cur2+2d, Xy A+ € A2+ 2Py A+ o X+ hy ¥yt iy A+,
=5, X7 + ko u¥*+a,. | [(ax,+u)?+2(ax, +uF)cqh+c?(q; A2 +9;, A+q3)]+
+2by+ 1 [(ax,+uk) 1, +(ax, +u}) gA+cqiry+c(q, A2 +45 A+ 43)] +
+eper [ra+2qrad+q1 A2 +q2 A+q3]+
+2d,,, [(ax,+u¥) A+cqi*]+
teps A2+ 20 (raA+qgAD) +gns (ax, +u¥ +cql)+
Fhps 1 (ra+qA) +ine s Atjney

Taking into account that

k QM Ay +(Q"+1)B, 4,
(22 ax +u: — a n X — n+1 n
) " kn+An+l " kn+An+1
and substituting this in (21) we obtain by successive comparison of terms
containing X7, X,ry, 12, XaA, A% ryd, X, 1, A 1 the following:

Fo= EnXy+F,or,

Ay = Sy+kn(E,— @)’ +a,., E,
by = kyFy(E,—a)+E, Fpays 1+ Eybpsy,
Co=knFR+Fpay,1+2F,byyi+Cprys

) d,=cqE,a,. 1 +qE, b, +E,dp,y,
€ =C"q1 0y 1+2041 bpyy+q1 Cpy 1 +20qdns 1 +€0s 1 +24f 041,
Jo=cqFpap 1 +q(Fy+0)bpry+qCnsy +Frdysy +fosy,
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9n = Engn+1,
hy=Fngn+1+hesy,

) in= G2 @ps1+20d2 bpr 1 +02Cor 1 +CqGn+ 1+ qHus s Finsy,
Jn=0q3(c*Apr 1+ 200,11+ Cpp 1) Fins1s

with the boundary conditions ay = sy, by =... =jy =0.

Comparing (16) and the first row of (23) we obtain
an_An = E:(an+l —An+ l)'

Since ay = Ay we have that a,= A, for n=0, 1, ..., N. Substituting this
into the second row of (23) we obtain b, = 0. Moreover, the conditions gy
=hy=0give g,=h,=0for n=0,1,..., N. Then R, reduces to the form

(24) R, =a,x2+c,r2+2d,x, A+ e, A2+ 2, raA+i, A+jn,
where the constants a,, ..., j, are determined from the equations
a, = A,

Co=Fo(ky+Api1)+Cosss

dy=cqAp+ E,+E,d,,
(25) n=0C"qy Apr 1441 Car1+26qdns 1 +2qf0s 1+ €01,

Sh=cqAni 1 Fatqcpe +Fpdui +fos,
in =G Ans1+4q2Cue1 Fine 1,

jn =43 (CZ An+1 +Cn+l)+jn+l
and
ay=5y, cn=dy=ey=fy=iy=jy=0.
6. We call a control policy U to be a constant risk control policy if
x(n, U) = const for each nerl. Since R(4, U*) =R, and E,(4%) = m, for
each ne I’ we obtain from (24) that U* is a constant risk control policy if

(26) 2y %o+ 2y r+ip = 0.

Let n* be the distribution of parameter 4 which has the density (3) and
for which the control policy U* is a Bayes one. Denote k(B, r) = E,(4?) for ©
given by (3). Since n*el, we obtain that the parameters B, r of the
distribution #n* satisfy the condition

(27) k(ﬂ’ r)=m2‘
But from decision theory a constant risk strategy which is Bayes with

respect to some me I’ is a minimax strategy [10]. Thus we have proved the
following
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THEOREM. Let B*, r* be a solution of equations (26) and (27), where d,, is a
constant, fo = fo(B), ic =io(B) are the functions of B determined from the
formulae (16), (22) and (25), where Q" = Q" (B) are defined by (6). The
policy U, Bayes with respect to distribution n* defined by (3) with f = p*,
r =r* is a minimax control policy. This control policy is given by (13) with

n—1
r=rt+ ¥ o, Q= Q0 (8Y).
i=0

From the Theorem it follows that the way to determine a minimax
control policy is complicated and in our opinion it hardly can be simplified
from the nature of the problem.

7. In this section we compute the parameters connected with the
filtration for some distributions belonging to the exponential family.

(a) Let the random variables v, be distributed according to the Poisson
law

v

p(v, }) = %e" (4> 0).

Then
E(,) =4, E@)=4A+1
and g=gq, =q, =1, g3 =0. Moreover, according to (3) the a priori

distribution n of parameter A is of the form

—ﬁ’—ﬂ."’e_“,
g(2; B, 1) =T ()
0, if 1<0,

if A>0,

what implies

E,() =r/B, E.(A?)=r(r+1)/p.
The equation (27) takes now the form
(28) r(r+1)/p* = m,.

The conditional density of the random variable v, given X, is

S(U)C(Bm rn) _ B:‘n F(r”+v) 1
C(ﬂ,,+l,r,,+u)—1‘(rn) ! (/3,,+1)”'+"'

h(v| X,) =

Since

ao

z Ir'(r+v) 1 _ I
v=0 v! (B+1)r+v_ Br ’
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then
E(UnIXn)=rn/Bm E(v,,(v,,—l)lX,,)=r,,(r,,+1)/ﬂ,f,

what leads to the equation

r2 B,+1
E(Uﬁlxn):'ﬁ'l' ﬂ: ry.
Then
1 1 1 )
o" = 5 P =23, QY =ﬂﬁ—, oy =0.

(b) Suppose that the random variables v, have the gamma distribution

1 -1 _-v/a .
P, 2) = {r(qw Ve e,
0, if v<O0.

Then

E(w) =4qA, E@®}) =gq(g+1)A?

and ¢, =q(q+1), 4, =45 =0.
According to (3) the a priori distribution n of parameter 4 is of the form

b+t 1
g(i; B, r)=%r<ﬂ+1) A2
0, if A1<0.

e N if 1>0,

and

E, () =r/B, E.(2*)=r’/p(B-1).
Equation (27) takes then the form
(29) r’/B(B—1) = m;.

The conditional density of random variable v, given X, is now

Bnt1 -1
Tn . v if b0
h(v| X,) = {B(q, But 1) (4oL :
0, if <0,
what gives
qg+1) ,

E@ X = 4", EQHX) =5 0 —prs
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Then

q mw_ 4@g+1)
ﬂn’ ! ﬂn(ﬂn—l)’

(c) Suppose that v, have the binomial distribution

Q" = 09 =09 = 0.

MmM=Cﬁ%h%V” 0<i<l)

In this case
E;(v) =q4, E;(v})=q(@—1)1*+44,

ie. g, =q(q—1), =g, 43 =0.
The a priori distribution 7 is now a beta distribution

1
g(4; B, rn = %B(r, B—r)

0 in the other case

IFTLA=FT i 0<i<],

and

E.(A) =r/B, E.(A%)=r(r+1)/B(B+1).
Then the equation (27) is now of the form
(30) re+1)/BB+1)=m, (B>0,0<m, <1).
To determine the parameters Q; we obtain from (5)

B(r,,+v, ﬂn+q_rn-'v)
B(rm Bn_rn)

holX) = (?)

Then

1 k] q

EGX) = 5051 gov(v

)B(rn+v’ ﬂn+q“rn_v)

1

q [ r Bp—rpy—1 2 q—1 -1 -1
-t "1l—= n~Tn v 1—x)
B(rm ﬂn—'rn) J 8 ( X) <v§l (U—l)x ( X) )dx
0
l‘
q r ﬂ -rp—1 rn
=———— | x"(1=x)" " dx=q.
B(rm ﬂn_rn)d ( ABn
0
In a similar way
r.(r.+1)

E(v,(v,— 1| X,) =q(q— l)ml—)-
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Then
wm_9 w_ 4@-1) mw_ 4Bn+9) w — 0
=5 ' ThGAn YRGBy
(d) Suppose that the random variables v, have the negative binomial
distribution
r'q+v) A’
TF@r+1) A+

p(v, 4) =
We obtain
E(v,) =qA, E@®2) =q(@+1)A*+4A.

Then g, =q(g+1), 92 =4g, 95 =0.
Let g be a natural number. Let us put p=A4/(1+A4). In this case the

distribution p(v, 1) takes the more familiar form
g+o—1\ |
p. )= (""" )pra—pr.

According to (3) we have
1 lr—l

ﬂh&ﬂ={3w+hﬂﬂ+w““’ i 4>0,
0, if  1<0,
and
E. (1) = E (12) = r+D 1).
(=1, E0H=2E (B> 1)
Then
r(ir+1)
31 =m,.
Gh By ™
To determine Q; we obtain from (15)
_ TI'(g+v) B(f,+q+1,r,+0)
MOIXD) = O Tw+ D) BB, +L.r)
and
_ o, TI(g+vy B(B,+q+1,r,+v)
Eo| X = .Z'ovr(Q)F(v+1) B(f,+1,r,)
q X TI'(g+1+v)

= B(ﬂn+1,r") v=0r(q+1)r(v+1)B(Bn+q+l, r,,+u+1)
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1

_ q > TI'(g+1+v) oty Bota
=B 17) & Ta+ DT+ J" (1= dx
0

1

4 B R - R . ot
“W—)J N P

"n -1 _ r_n
B(ﬁ,.+1 ) J (- d"“’ﬁn‘

0

Similarly

ra(rat1)

E (v, (v,— 1)| n) =4q(q+ )ﬁn(ﬂn—l)

Then

l n
Q(") = %’ Q(l) ﬂq EZ-'_ ) Q(Zn) = g((‘;;-_ﬁl))’ Q(sn) =0.

(e) Let the random variables v, be normally distributed

plv, ) = —m et
2n

Then
Ew)=4, E@)=41*+1

and g =¢, =¢q3 =1, g, =0.
Let, according to (3), the a priori distribution n of parameter A be given

1, E().z)——2+1 (>0, —0 <r < ).
B BB

Then the parameters p and r satisfy the condition

What implies

E.(3) =

(32)
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The conditional density of the random variable v, given X, is

_ S(U)C(ﬁm rn) _ Bn+1 ﬂn (v'—rn/ﬂn)z
X = Bt rto) N 216, CXP{_I}..H 2 }

what gives

2
B(alX) = 7. E(v.?IX,.)=%+ﬂ"ﬂ+l-

Then
Q" =1/8,, QP =1/p2, QP =0, QF =(B,+1)/B.
8. Let N =1. From (16), (17), (22) and (25) we obtain

ak cs, Q@
0= 0=~
ko+s,’ ko+s,’
akg cs; 0 ) 5
do = cqs ’ 0= —CqSy 7———» lg=C"(q28;
k0+31 ko+Sl

and the equation (26) now is

(33) 2aky qxo+cq;(ko+5y) = 2¢5, 90 Or.
Moreover,
(34) Q9 = ¢/,

where g = 1 in the cases (a) and (d) and g > 0 in the cases (b), (c), (d). Solving
the equations (28)—(32) with respect to r and taking into account equation
(34) we obtain that the function ¢(B) = Q'”r/q takes the values in the
intervals

(@) (0, /mz), (b) (0, /my), (¢) (my, /my),
@) (0, /my), (&) (—/my, /m,).

Then the equation (33) has a solution only if x, satisfies the corresponding
inequalities.

For the normal distribution is q, = 0 what compared with (25) implies
in=0, n=0,1,..., N. The equation (26) takes in this case a simple form

doX0+f0r = 0.

At the end, let us notice that the method presented in the paper can bé
applied also in the case when the coefficients a and ¢ in (1) depend on n
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